(Cu1-x,Agx)2ZnSnSe4 alloys have been fabricated with different Ag content(x=0, 0.1, and 0.2) successfully from their elements. Thin films of these alloys have been deposited on coring glass substrate at room temperature by thermal evaporation technique under vacuum of 10-5Torr with thickness of 800nm and deposition rate of 0.53 nm/sec. Later, films have been annealed in vacuum at (373, and 473)K, for one hour. The crystal structure of fabricated alloys and as deposited thin films had been examined by XRD analysis, which confirms the formation of tetragonal phase in [112] direction, and no secondary phases are founded. The shifting of main polycrystalline peak (112) to lower Bragg’s angle as compared to Cu2ZnSnSe4 angle refers to incorporation of Ag in the lattice. Annealing films adopt the similar structure, but peaks become sharper and more intensity, and crystallizing increase with increasing annealing temperature. AFM images confirms that all thin CAZTSe films are polycrystalline in nature and demonstrated that the size of grains increases with increasing Ag content and annealing temperature.
In this research, the mechanical properties of natural rubber blends in different proportions (70:30, 85:15, 100: 0 55:45 and phr) was studied through the use of two types of fillers (carbon black and titanium dioxide Nano) which show through tests conducted on the prepared models that increase fillers content which leads to improve the tensile properties (tensile strength, elastic modulus, elongation, hardness and compressibility). As shown by the results that the presence of polypropylene (PP) in the mix combination works to reduce the degree of intumescent and increase its content in the composition of mixtures which leads to get a great resistance to chemicals (acids, bases and oils).
Cu X Zn1-XO films with different x content have been prepared by
pulse laser deposition technique at room temperatures (RT) and
different annealing temperatures (373 and 473) K. The effect of x
content of Cu (0, 0.2, 0.4, 0.6, 0.8) wt.% on morphology and
electrical properties of CuXZn1-XO thin films have been studied.
AFM measurements showed that the average grain size values for
CuXZn1-xO thin films at RT and different annealing temperatures
(373, 473) K decreases, while the average Roughness values increase
with increasing x content. The D.C conductivity for all films
increases as the x content increase and decreases with increasing the
annealing temperatures. Hall measurements showed that there are
two
Polyaniline Multi walled Carbon nanotubes (PANI/MWCNTs) nanocomposite thin films have been prepared by non-equilibrium atmospheric pressure plasma jet on glass substrate with different weight percentage of MWCNTs 1, 2, 3, 4%. The diameter of the MWCNTs was in the range of 8-55 nm and length - - 55 55 μm. the nanocomposite thin films were characterized by UV-VIS, XRD, FTIR, and SEM. The optical studies show that the energy band gap of PANI/MWCNTs nanocomposites thin films will be different according to the MWCNTs polyaniline concentration. The XRD pattern indicates that the synthesized PANI/MWCNTs nanocomposite is amorphous. FTIR reveals the presence of MWCNTs nanoparticle embedded into polyaniline. SEM surface images show that the MWCNT
... Show MoreThe electrical properties of pure NiO and NiO:Au Films which are
deposited on glass substrate with various dopant concentrations
(1wt.%, 2wt%, 3wt.% and 4wt.%) at room temperature 450 Co
annealing temperature will be presented. The results of the hall effect
showed that all the films were p-type. The Hall mobility decreases
while both carrier concentration and conductivity increases with the
increasing of annealing temperatures and doping percentage, Thus,
indicating the behavior of semiconductor, and also the D.C
conductivity from which the activation energy decrease with the
doping concentration increase and transport mechanism of the charge
carriers can be estimated.
Copper oxide thin films were synthesized by using spray pyrolysis deposition technique, in the temperature around 400°C in atmosphere from alcoholic solutions. Copper (II) chloride as precursor and glass as a substrate. The textural and structural properties of the films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD). The average particle size determined from the AFM images ranged from 30 to 90 nm and the roughness average was equal to 9.3 nm. The XRD patterns revealed the formation of a polycrystalline hexagonal CuO. The absorption and transmission spectrum, band gap, film thickness was investigated. The films were tested as an |
In this paper the effect of nonthermal atmospheric argon plasma on the optical properties of the cadmium oxide CdO thin films prepared by chemical spray pyrolysis was studied. The prepared films were exposed to different time intervals (0, 5, 10, 15, 20) min. For every sample, the transmittance, Absorbance, absorption coefficient, energy gap, extinction coefficient and dielectric constant were studied. It is found that the transmittance and the energy gap increased with exposure time, and absorption. Absorption coefficient, extinction coefficient, dielectric constant decreased with time of exposure to the argon plasma
The aim of the present research is concerned with study the effect of UV radiation on the optical properties at wavelengths 254, 365 nm of pure PC and anthracene doping PC films prepared using the cast method for different doping ratio 10-60 mL. Films of pure PC and anthracene doping PC were aged under UV radiation for periods of up to 360 h. It found that the effect of UV radiation at wavelength 254 nm on the optical properties is great than the effect of UV radiation at wavelength 365 nm. Also, it found that the optical energy gap of pure PC and anthracene doping PC films is stable against radiation.
The CdSe pure films and doping with Cu (0.5, 1.5, 2.5, 4.0wt%) of thickness 0.9μm have been prepared by thermal evaporation technique on glass substrate. Annealing for all the prepared films have been achieved at 523K in vacuum to get good properties of the films. The effect of Cu concentration on some of the electrical properties such as D.C conductivity and Hall effect has been studied.
It has been found that the increase in Cu concentration caused increase in d.c conductivity for pure CdSe 3.75×10-4(Ω.cm)-1 at room temperatures to maximum value of 0.769(Ω.cm)-1 for 4wt%Cu.All films have shown two activation energies, where these value decreases with increasing doping ratio. The maximum value of activation energy was (0.319)eV f
Thin films of tin disulphide SnS2 with different thicknesses (2500,4000,5000)A0 have been prepared by chemical spray pyrolises technique on substrate of glass with temperature (603)K . The effect of thickness on the optical properties of SnS2 has been studied.the optical study that includes the absorptance and transmittance spectra in the wavelength range (300900)nm demonstrated that the value of absorption coefficient (α) ) was greater than (104 cm-1) the electronic transitions at the fundamental absorption edge were of the indirect kind whether allowed and forbidden . Absorption edge shift slightly towards higher wave length.The value of energy gaps (Eg) for all the films prepared are decreased with inc
... Show MoreThe technical of Flame Thermal Spray had been used in producing a cermet
composite based on powders of stabilized zirconium oxide containing amount of
Yatteria oxide (ZrO2- 8Y2O3) reiforced by minerals powders of bonding material
(Ni-Cr- Al- Y) in different rates of additions (25, 35, 50) on stainless steel base type
(304) after preparing it by the way of Grit Blasting.
Before heat treatment, the coated cermet layers were characterized for porosity
and electric resistivity. All samples were heat treated in vacuum furnace at different
temperature and times. The physical tests had been operated after heat treatment
and gave best results especially porosity, which found to be reduced dramatically
and producing hig