This review article summarizes our research focused on Cu(In, Ga)Se2 (CIGS) nanocrystals, including their synthesis and implementation as the active light absorbing material in photovoltaic devices (PVs). CIGS thin films were prepared by arrested precipitation from molecular precursors consisting of CuCl, InCl3, GaCl3 and Se metal onto Mo/soda-lime glass (SLG) substrates. We have sought to use CIGS nanocrystals synthesized with the desired stoichiometry to deposit PV device layers without high temperature processing. This approach, using spray deposition of the CIGS light absorber layers, without high temperature selenization, has enabled up to 1.5 % power conversion efficiency under AM 1.5 solar illumination. The composition and morphology of CIGS thin films were studied using energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM), respectively. X-ray diffraction (XRD) studies show that the structural formation of CIGS chalcopyrite structure.
Optical properties of Rhodamine-B thin film prepared by PLD
technique have been investigated. The absorption spectra using
1064nm and 532 nm laser wavelength of different laser pulse
energies shows that all the curves contain two bands, B band and Q
bands with two branches, Q1 and Q2 band and a small shift in the
peaks location toward the long wavelength with increasing laser
energy. FTIR patterns for Rhodamine-B powder and thin film within
shows that the identified peaks were located in the standard values
that done in the previous researches. X-ray diffraction patterns of
powder and prepared Rhodamine-B thin film was display that the
powder has polycrystalline of tetragonal structure, while the thin film
Pure cadmium oxide films (CdO) and doped with zinc were prepared at different atomic ratios using a pulsed laser deposition technique using an ND-YAG laser from the targets of the pressed powder capsules. X-ray diffraction measurements showed a cubic-shaped of CdO structure. Another phase appeared, especially in high percentages of zinc, corresponding to the hexagonal structure of zinc. The degree of crystallinity, as well as the crystal size, increased with the increase of the zinc ratio for the used targets. The atomic force microscopy measurements showed that increasing the dopant percentage leads to an increase in the size of the nanoparticles, the particle size distribution was irregular and wide, in addition, to increase the surfac
... Show MoreBackground: Bladder cancer (BC) is the most common malignant tumor in the urinary tract and the tenth most common malignancy worldwide. Exosomes are 40–100 nm-diameter nanovesicles that are either released straight from the plasma membrane during budding or merged with the plasma membrane by multivesicular bodies. Objectives: To assess the proportion of serum and urinary Exosome levels in urinary bladder cancer patients, as well as their impact on the disease. Methods: From January 2023 to June 2023, a total of 45 samples of blood and urine were collected from individuals diagnosed with bladder cancer at the Ghazi Hariri Hospital for Specialized Surgery. They included 45 male and female patients, varying in age, as well as 45 heal
... Show MoreIn this work , the effect of chlorinated rubber (additive I), zeolite 3A with chlorinated rubber (additive II), zeolite 4A with chlorinated rubber (additiveIII), and zeolite 5A with chlorinated rubber (additive IV), on flammability for epoxy resin studied, in the weight ratios of (2, 4, 7,10 & 12%) by preparing films of (130x130x3) mm in diameters, three standard test methods used to measure the flame retardation which are ; ASTM : D-2863 , ASTM : D-635 & ASTM : D-3014. Results obtained from these tests indicated that all of them are effective and the additive IV has the highest efficiency as a flame retardant.
Seeds, beans, leaves, fruit peel and seeds of five plants (Ferula assa-foetida, Coffea robusta, Olea europaea, Punica granatum and Vitis vinifera, respectively) were extracted with four solvents (distilled water, 80% methanol, 80% acetone and a mixed solvent that included methanol, ethanol, acetone and n-butanol at proportions 7:1:1:1). Such manipulation yielded 20 extracts, which were phytochemically analyzed for total polyphenols (TP) and flavonoids (TF). The DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (RSA) and DPP-4 (dipeptidyl peptidase-4) relative inhibition activity (RIA) were also assessed for each extract. The results revealed that mixed solvent extract of V.
... Show MoreThis research studies the possibility of producing Bone China with available local and geological substitutes and other manufactured ones since it’s traditionally produced by Bone ash, Cornish stone, and China clay, while the substitutes are Kaolin instead of China clay and Feldspar potash instead of Cornish stone. Because of the unavailability of Feldspar in Iraq, it was substituted with the manufactured alternative Feldspar. Bone ash was prepared from cow bones with heating treatments, grinding and sifting. The alternative Feldspar was prepared by chemical analysis of the natural Feldspar potash with local materials that include Dwaikhla Kaolin, Urdhuma Silica sand, Potassium Carbonate, and Sodium Carbonate. The mixture was burned at
... Show MoreIn Indonesia, cattle feces (CF) and water hyacinth (WH) plants are abundant but have not been widely revealed. The use of microorganisms as decomposers in the fermentation process has not been widely applied, so researchers are interested in studying further. This study was to evaluate the effect of the combination of CF with WH on composting by applying white-rot fungal (WRF) (Ganoderma sp) microorganism as a decomposer. A number of six types of treatment compared to R1(ratio of CF:WH)(25%:75%)+WRF; R2(ratio of CF:WH)(50%:50%)+WRF; R3(ratio of CF:WH)(75%:25%)+WRF; R4(ratio of CF:WH)(25%:75%) without WRF; R5(ratio of CF:WH)(50%:50%) without WRF; R6(ratio of CF:WH)
... Show MoreNew Schiff base and their Mn(II),Co(II),Ni(II), Cu(II) and Hg(II) complexes formed by the condensation of O-phathaldehyde and ethylene diamine (2:1) to give ligand (L1) in the first step ,then the ligand (L1) with 2- aminophenol (1:2) to give ligand (L2) were prepared by classic addition through microwave method . These compounds (Ligands and complexes) have been diagnosed electronic spectra, FT-IR,1H-&13C-NMR (only ligand), magnetic susceptibility, elemental microanalysis and molar conductance measurements. Analytical values displayed that all the complexes appeared (metal: ligand) (1:1) ratio with the six chelation. All the compounds appear a high activity versus four types of bacteria such as; (Escherichia coli), (Sta
... Show More