This review article summarizes our research focused on Cu(In, Ga)Se2 (CIGS) nanocrystals, including their synthesis and implementation as the active light absorbing material in photovoltaic devices (PVs). CIGS thin films were prepared by arrested precipitation from molecular precursors consisting of CuCl, InCl3, GaCl3 and Se metal onto Mo/soda-lime glass (SLG) substrates. We have sought to use CIGS nanocrystals synthesized with the desired stoichiometry to deposit PV device layers without high temperature processing. This approach, using spray deposition of the CIGS light absorber layers, without high temperature selenization, has enabled up to 1.5 % power conversion efficiency under AM 1.5 solar illumination. The composition and morphology of CIGS thin films were studied using energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM), respectively. X-ray diffraction (XRD) studies show that the structural formation of CIGS chalcopyrite structure.
InSb alloy was prepared then InSb:Bi films have been prepared successfully by thermal evaporation technique on glass substrate at Ts=423K. The variation of activation energies(Ea1,Ea2)of d.c conductivity with annealing temperature (303, 373, 423, 473, 523 and 573)K were measured, it is found that its values increases with increasing annealing temperature. To show the type of the films, the Hall and thermoelectric power were measured. The activation energy of the thermoelectric power is much smaller than for d.c conductivity and increases with increasing annealing temperature .The mobility and carrier concentration has been measured also.
The CuInSe2 (CIS) nanocrystals are synthesized by arrested precipitation from molecular precursors are added to a hot solvent with organic cap- ping ligands to control nanocrystal formation and growth. CIS thin films deposited onto glass substrate by spray - coating, then selenized in Ar- atmosphere to form CIS thin films. PVs were made with power conversion efficiencies of 0.631% as -deposited and 0.846% after selenization, for Mo coated, under AM 1.5 illumination. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis it is evident that CIS have the chalcopyrite structure as the major phase with a preferred orientation along (112) direction and the atomic ratio of Cu : In : Se in the nanocrystals is nearly 1 : 1 : 2
In the present work we prepared heterojunction not homogenous CdS/:In/Cu2S) by spray and displacement methods on glass substrate , CdS:In films prepared by different impurities constration. Cu2S prepared by chemical displacement method to improve the junction properties , structural and optical properties of the deposited films was achieved . The study shows that the film polycrystalline by XRD result for all film and the energy gap was direct to 2.38 eV with no effect on this value by impurities at this constration .
A nanocrystalline CdS thin film with 100 nm thickness has been prepared by thermal evaporation technique on glass substrate with substrate temperature of about 423 K. The films annealed under vacuum at different annealing temperature 473, 523 and 573 K. The X-ray diffraction studies show that CdS thin films have a hexagonal polycrystalline structure with preferred orientation at (002) direction. Our investigation showed the grain size of thin films increased from 9.1 to 18.9 nm with increasing the annealing temperature. The optical measurements showed that CdS thin films have direct energy band gap, which decreases with increasing the annealing temperature within the range 3.2- 2.85 eV. The absorbance edge is blue shifted. The absorption
... Show MoreAlO-doped ZnO nanocrystalline thin films from with nano crystallite size in the range (19-15 nm) were fabricated by pulsed laser deposition technique. The reduction of crystallite size by increasing of doping ratio shift the bandgap to IR region the optical band gap decreases in a consistent manner, from 3.21to 2.1 eV by increasing AlO doping ratio from 0 to 7wt% but then returns to grow up to 3.21 eV by a further increase the doping ratio. The bandgap increment obtained for 9% AlO dopant concentration can be clarified in terms of the Burstein–Moss effect whereas the aluminum donor atom increased the carrier's concentration which in turn shifts the Fermi level and widened the bandgap (blue-shift). The engineering of the bandgap by low
... Show MorePure Cu (CZTSe) and Ag dopant CZTSe (CAZTSe) thin films with Ag content of 0.1 and 0.2 were fabricated on coring glass substrate at R.T with thickness of 800nm by thermal evaporation method. Comparison between the optical characteristics of pure Cu and Ag alloying thin films was done by measuring and analyzing the absorbance and transmittance spectra in the range of (400-1100)nm. Also, the effect of annealing temperature at 373K and 473K on these characteristics was studied. The results indicated that all films had high absorbance and low transmittance in visible region, and the direct bang gap of films decreases with increasing Ag content and annealing temperature. Optical parameters like extinction coefficientrefractive index, and
... Show MoreThe effect of different doping ratio (0.3, 0.5, and 0.7) with thickness in the range 300nmand annealed at different temp.(Ta=RT, 473, 573, 673) K on the electrical conductivity and hall effect measurements of AgInTe2thin film have and been investigated AgAlxIn(1-x) Te2 (AAIT) at RT, using thermal evaporation technique all the films were prepared on glass substrates from the alloy of the compound. Electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated as a function of doping. All films consist of two types of transport mechanisms for free carriers. The activation energy (Ea) decreased whereas electrical conductivity increases with increased doping. Results of Hall Effect
... Show MoreThin films of CdS:Cu were deposited onto glass substrate temperature 400 °c. The optieal properties have been studied for Cds doped with (1,3, 8) wt% of Cu before and after Gamma irradiation. It was found that the irradiation caused an ( Frenkel defects) where the atom is displaced from its original site leaving vacancy and forming on interstitial atom. It was found the irradiation caused an absorption edge shifting towards long wavelength as a result of the increasing of Cu concentration.