Thin films of Nb2O5 have been successfully deposited using the DC reactive magnetron sputtering technique to manufacture NH3 gas sensors. These films have been annealed at a high temperature of 800°C for one hour. The assessment of the Nb2O5 thin films structural, morphological, and electrical characteristics was carried out using several methods such as X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity assessments. The XRD analysis confirms the polycrystalline composition of the Nb2O5 thin films with a hexagonal crystal structure. Furthermore, the sensitivity, response time, and recovery time of the gas sensor were evaluated for the Nb2O5 thin films at different operational temperatures. We have found that the NH3 sensor has its highest sensitivity of 33.3% when manufactured with a power setting of 50 W at room substrate temperature (RT) and an operating temperature of 200°C. It also has a rapid response time of 10 seconds when utilizing a substrate temperature of 150°C. Additionally, the sample prepared with a substrate temperature of 100°C has the quickest recovery time, recorded at 30 seconds
This survey investigates the thermal evaporation of Ag2Se on glass substrates at various thermal annealing temperatures (300, 348, 398, and 448) °K. To ascertain the effect of annealing temperature on the structural, surface morphology, and optical properties of Ag2Se films, investigations and research were carried out. The crystal structure of the film was described by Xray diffraction and other methods.The physical structure and characteristics of the Ag2Se thin films were examined using X-ray and atomic force microscopy (AFM) based techniques. The Ag2Se films surface morphology was examined by AFM techniques; the investigation gave average diameter, surface roughness, and grain size mutation values with increasing annealing temperature
... Show MoreAbstract
This paper concerned with study the effect of a graphite micro powder mixed in the kerosene dielectric fluid during powder mixing electric discharge machining (PMEDM) of high carbon high chromium AISI D2 steel. The type of electrode (copper and graphite), the pulse current and the pulse-on time and mixing powder in kerosene dielectric fluid are taken as the process main input parameters. The material removal rate MRR, the tool wear ratio TWR and the work piece surface roughness (SR) are taken as output parameters to measure the process performance. The experiments are planned using response surface methodology (RSM) design procedure. Empirical models are developed for MRR, TWR and SR, using the analysis
... Show MoreThis work deals with the production of light fuel cuts of (gasoline, kerosene and gas oil) by catalytic cracking treatment of secondary product mater (heavy vacuum gas oil) which was produced from the vacuum distillation unit in any petroleum refinery. The objective of this research was to study the effect of the catalyst -to- oil ratio parameter on catalytic cracking process of heavy vacuum gas oil feed at constant temperature (450 °C). The first step of this treatment was, catalytic cracking of this material by constructed batch reactor occupied with auxiliary control devices, at selective range of the catalyst –to- oil ratio parameter ( 2, 2.5, 3 and 3.5) respectively. The conversion of heavy vacuum gas
... Show MoreThis study investigates the ionic conduction dependence on the size of alkaline cations in gel polymer electrolytes based on double iodide can enhance by incorporating a salt having a bulky cation.
... Show MoreZinc sulfide(ZnS) thin films of different thickness were deposited on corning glass with the substrate kept at room temperature and high vacuum using thermal evaporation technique.the film properties investigated include their absorbance/transmittance/reflectance spectra,band gap,refractive index,extinction coefficient,complex dielectric constant and thickness.The films were found to exhibt high transmittance(59-98%) ,low absorbance and low reflectance in the visible/near infrared region up to 900 nm..However, the absorbance of the films were found to be high in the ultra violet region with peak around 360 nm.The thickness(using optical interference fringes method) of various films thichness(100,200,300,and 400) nm.The band gap meas
... Show MoreExpansive soil spreads in Iraq and some countries of the world. But there are many problems can be occurred to the structures that built on, so we must study the characteristics of these soils due to the problems that may be caused to these structures which built on these kinds of soil and then study the methods of treatment. The present study focuses on improving the geotechnical properties of expansive soils by treating it Metakaolin(M). Metakaolin (M) has never been used before as an improvement material for stabilizing the expansive soil . Metakaolin is a pozzolanic material. It’s obtained by calcination of kaolinite clay at temperatures from 700°C to 800°C. Kaolin chemical composition is
... Show MoreThe rheological and fusion behavior of polyvinyl chloride (PVC) compounds plays a dominant role in
the processing operations and in the development of physical properties in the processed material. A
comprehensive study was made in this work to evaluate the effect of shear and thermal history on stability, mechanical and rheological properties of rigid PVC compounds. Different samples of Rigid Poly vinyl chloride including dry blend powder, granules, and bottles molded from both were examined. A study was also made on recycled RPVC where 25% of reclaimed material was continuously blended with fresh dry blend and processed for 15 cycles. Results showed that compaction of the PVC material took place in the brabender plastograph at co