Thin films of Nb2O5 have been successfully deposited using the DC reactive magnetron sputtering technique to manufacture NH3 gas sensors. These films have been annealed at a high temperature of 800°C for one hour. The assessment of the Nb2O5 thin films structural, morphological, and electrical characteristics was carried out using several methods such as X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity assessments. The XRD analysis confirms the polycrystalline composition of the Nb2O5 thin films with a hexagonal crystal structure. Furthermore, the sensitivity, response time, and recovery time of the gas sensor were evaluated for the Nb2O5 thin films at different operational temperatures. We have found that the NH3 sensor has its highest sensitivity of 33.3% when manufactured with a power setting of 50 W at room substrate temperature (RT) and an operating temperature of 200°C. It also has a rapid response time of 10 seconds when utilizing a substrate temperature of 150°C. Additionally, the sample prepared with a substrate temperature of 100°C has the quickest recovery time, recorded at 30 seconds
This research includes depositionof thin film of semiconductor, CdSe by vaccum evaporation on conductor polymers substrate to the poly aniline where, the polymer deposition on the glass substrats by polymerization oxidation tests polymeric films and studied the structural and optical properties through it,s IR and UV-Vis , XRD addition to thin film CdSe, on of the glass substrate and on the substrate of polymer poly-aniline and when XRD tests was observed to improve the properties of synthetic tests as well as the semiconductor Hall effect proved to improve the electrical properties significantly
Chlorine doped SnS have been prepared utilizing chemical spray pyrolysis. The effects of chlorine concentration on the optical constants were studied. It was seen that the transmittance decreased with doping, while reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were increased as the doping percentage increased. The results show also that the skin depth decrease as the chlorine percentage increased which could be assure that it is transmittance related.
The Silver1Indium1Selenide (AgInSe2) (AIS) thin1films of (3001±20) nm thickness have been1prepared2from the compound alloys2using thermal evaporation2 technique onto the glass2substrate at room temperature, with a deposition rate2(3±0.1) nm2sec-1.
The2structural, optical and electrical3properties have been studied3at different annealing3temperatures (Ta=450, 550 and 650) K.
The amount3or (concentration) of the elements3(Ag, In, Se) in the prepared alloy3was verified using an
... Show MoreZinc Oxide (ZnO) is considered as one of the best materials already used as a window layer in solar cells due to its antireflective capability. The ZnO/MgF2 bilayer thin film is more efficient as antireflective coating. In this work, ZnO and ZnO/MgF2 thin films were deposited on glass substrate using pulsed laser deposition and thermal evaporation deposition methods. The optical measurements indicated that ZnO thin layer has an energy gap of (3.02 eV) while ZnO/MgF2 bilayer gives rise to an increase in the energy gap. ZnO/MgF2 bilayer shows a high energy gap (3.77 eV) with low reflectance (1.1-10 %) and refractive index (1.9) leading to high transmittance, this bilayer could be a good candidate optical material to improve the performance
... Show MoreIn this research the electrical conductivity and optical measurements were made on the Iron Oxide (Fe2O3) films prepared by chemical spray pyrolysis method as a function of thickness (250, 350, 450, and 550)  20 nm. The measurements of electrical conductivity (σ), activation energies (Ea1, Ea2),and optical constant such as absorption coefficient, refractive index, extinction coefficient and the dielectric constants for the wavelengths in the range (300-900) nm have been investigated on (Fe2O3) thin films as a function of thickness. All films contain two types of transport mechanisms, and the electrical conductivity (σ) increases whereas the activation energy (Ea) would decrease as the films thi
... Show MoreThin films samples of Bismuth sulfide Bi2S3 had deposited on
glass substrate using thermal evaporation method by chemical
method under vacuum of 10-5 Toor. XRD and AFM were used to
check the structure and morphology of the Bi2S3 thin films. The
results showed that the films with law thickness <700 nm were free
from any diffraction peaks refer to amorphous structure while films
with thickness≥700 nm was polycrystalline. The roughness decreases
while average grain size increases with the increase of thickness. The
A.C conductivity as function of frequency had studied in the
frequency range (50 to 5x106 Hz). The dielectric constant,
polarizability showed significant dependence upon the variation of
thic
In this research, the structural and optical properties were studied for Bi2O3 and Bi2O3: Al thin films with different doping ratios ( 1, 2, 3 ) % , which were prepared by thermal evaporation technique under vacuum , with thickness ( 450 ± 20 ) nm deposited on glass substrates at room temperature ( 300 ) K , Structural measurements by ( XRD) techniques demonstrated that all samples prepared have polycrystalline structure with tetragonal structure and a preferred orientation [ 201 ] the &n
... Show MoreThin films of CdS:Cu were deposited onto glass substrate temperature 400 °c. The optieal properties have been studied for Cds doped with (1,3, 8) wt% of Cu before and after Gamma irradiation. It was found that the irradiation caused an ( Frenkel defects) where the atom is displaced from its original site leaving vacancy and forming on interstitial atom. It was found the irradiation caused an absorption edge shifting towards long wavelength as a result of the increasing of Cu concentration.