Computer vision seeks to mimic the human visual system and plays an essential role in artificial intelligence. It is based on different signal reprocessing techniques; therefore, developing efficient techniques becomes essential to achieving fast and reliable processing. Various signal preprocessing operations have been used for computer vision, including smoothing techniques, signal analyzing, resizing, sharpening, and enhancement, to reduce reluctant falsifications, segmentation, and image feature improvement. For example, to reduce the noise in a disturbed signal, smoothing kernels can be effectively used. This is achievedby convolving the distributed signal with smoothing kernels. In addition, orthogonal moments (OMs) are a crucial technique in signal preprocessing, serving as key descriptors for signal analysis and recognition. OMs are obtained by the projection of orthogonal polynomials (OPs) onto the signal domain. However, when dealing with 3D signals, the traditional approach of convolving kernels with the signal and computing OMs beforehand significantly increases the computational cost of computer vision algorithms. To address this issue, this paper develops a novel mathematical model to embed the kernel directly into the OPs functions, seamlessly integrating these two processes into a more efficient and accurate approach. The proposed model allows the computation of OMs for smoothed versions of 3D signals directly, thereby reducing computational overhead. Extensive experiments conducted on 3D objects demonstrate that the proposed method outperforms traditional approaches across various metrics. The average recognition accuracy improves to 83.85% when the polynomial order is increased to 10. Experimental results show that the proposed method exhibits higher accuracy and lower computational costs compared to the benchmark methods in various conditions for a wide range of parameter values.
This study aimed to investigate the influence of longitudinal steel embedded tubes located at the center of the column cross-section on the behavior of reinforced concrete (RC) columns. The experimental program consisted of 8 testing pin-ended square sectional columns of 150×150 mm, having a total height of 1400 mm, subjected to eccentric load. The considered variables were the steel square tube sizes of 25, 51 and 68 mm side dimensions and the load eccentricity (50 and 150) mm. RC columns were concealed steel tubes with hollow ratios of 3%, 12% and 20% depending on tube sizes used. The experimental results indicated an improvement in the overall behavior of eccentric columns when steel embedded tubes are used. The maximum gain in
... Show MoreAn experimental investigation based on thirty three simple pullout cylinder specimens was conducted to study the bond-slip trend between concrete and steel reinforcement. Plain and deformed steel reinforcement bars were used in this investigation. The effect of bar diameter, concrete compressive strength and development length on bond-slip relation was detected. The results showed that the bond strength increases with increasing of compressive strength and with decreasing of bar diameter and development length. A nonlinear regression analysis for the experimental results yields in a mathematical correlation to predict the bond strength as a function of concrete compressive strength, reinforcing bar diameter and its yield stress. The minimum
... Show MoreExperimental research was carried out on eight reinforced concrete beams to study the embedded length of the longitudinal reinforcement. Six beams were casted using self compacted concrete, and the two other beams were casted using normal concrete. The test was carried out on beams subjected to two point loads. The strain and the slip of the main reinforcement have been measured by using grooves placed during casting the beams at certain places. The measured strain used to calculate the longitudinal stresses (bond stress) surrounding the bar reinforcement, The study was investigated the using of self compacted concrete SCC on the embedded length of reinforcing bars, and comparing the results with normal concrete. The test results show th
... Show MoreChurning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s
... Show MoreBackground: Mouthwashes used widely as ancillary to mechanical oral hygiene methods. Little information provided about the effect of mouthwashes on ions released from orthodontic brackets. Therefore, the present study has been established to evaluate the effect of different mouthwashes on the corrosion resistance and the biocompatibility of two brands of brackets. Materials and Methods: Eighty premolar stainless steel brackets were used (40 brackets from each brand). They were subdivided into four subgroups (n=10) according to immersion media (deionized distilled water, Corsodyl, Listerine and Silca herb mouthwashes). Each bracket was stored in a closely packed glass tube filled with 15ml of the immersion media and incubated for 45 days at
... Show MoreAbstract: Word sense disambiguation (WSD) is a significant field in computational linguistics as it is indispensable for many language understanding applications. Automatic processing of documents is made difficult because of the fact that many of the terms it contain ambiguous. Word Sense Disambiguation (WSD) systems try to solve these ambiguities and find the correct meaning. Genetic algorithms can be active to resolve this problem since they have been effectively applied for many optimization problems. In this paper, genetic algorithms proposed to solve the word sense disambiguation problem that can automatically select the intended meaning of a word in context without any additional resource. The proposed algorithm is evaluated on a col
... Show MoreAs s widely use of exchanging private information in various communication applications, the issue to secure it became top urgent. In this research, a new approach to encrypt text message based on genetic algorithm operators has been proposed. The proposed approach follows a new algorithm of generating 8 bit chromosome to encrypt plain text after selecting randomly crossover point. The resulted child code is flipped by one bit using mutation operation. Two simulations are conducted to evaluate the performance of the proposed approach including execution time of encryption/decryption and throughput computations. Simulations results prove the robustness of the proposed approach to produce better performance for all evaluation metrics with res
... Show MoreThe main objective of this research is to use the methods of calculus ???????? solving integral equations Altbataah When McCann slowdown is a function of time as the integral equation used in this research is a kind of Volterra