The Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimating the scale parameter of the Weibull distribution. To evaluate their performance, we generate simulated datasets with different sample sizes and varying parameter values. A technique for pre-estimation shrinkage is suggested to enhance the precision of estimation. Simulation experiments proved that the Bayesian shrinkage estimator and shrinkage preestimation under the squared loss function method are better than the other methods because they give the least mean square error. Overall, our findings highlight the advantages of shrinkage Bayesian estimation methods for the proposed distribution. Researchers and practitioners in fields reliant on extreme value analysis can benefit from these findings when selecting appropriate Bayesian estimation techniques for modeling extreme events accurately and efficiently.
We describe the synthesis and characterization of a novel 2D-MnOx material using a combination of HR-TEM, XAS, XRD, and reactivity measurements. The ease with which the 2D material can be made and the conditions under which it can be made implies that water oxidation catalysts previously described as “birnessite-like” (3D) may be better thought of as 2D materials with very limited layer stacking. The distinction between the materials as being “birnessite-like” and “2D” is important because it impacts on our understanding of the function of these materials in the environment and as catalysts. The 2D-MnOx material is noted to be a substantially stronger chemical oxidant than previously noted for other birnessite-like manganese oxi
... Show MoreStatistical methods of forecasting have applied with the intention of constructing a model to predict the number of the old aged people in retirement homes in Iraq. They were based on the monthly data of old aged people in Baghdad and the governorates except for the Kurdistan region from 2016 to 2019. Using Box-Jenkins methodology, the stationarity of the series was examined. The appropriate model order was determined, the parameters were estimated, the significance was tested, adequacy of the model was checked, and then the best model of prediction was used. The best model for forecasting according to criteria of (Normalized BIC, MAPE, RMSE) is ARIMA (0, 1, 2).
Statistical methods of forecasting have applied with the intention of constructing a model to predict the number of the old aged people in retirement homes in Iraq. They were based on the monthly data of old aged people in Baghdad and the governorates except for the Kurdistan region from 2016 to 2019. Using BoxJenkins methodology, the stationarity of the series was examined. The appropriate model order was determined, the parameters were estimated, the significance was tested, adequacy of the model was checked, and then the best model of prediction was used. The best model for forecasting according to criteria of (Normalized BIC, MAPE, RMSE) is ARIMA (0, 1, 2)
Water is necessary for sustainable development and healthy society. Groundwater, often, is not sufficient and protected for direct human consumption. Due to increase in the density of population the requirement of water is increasing. In this work, the assessment of groundwater quality was conducted in the south-west part of Basrah province. Spatial variations in the quality of groundwater in the study area have been analyzed utilizing GIS technique. The geochemical parameters of groundwater samples including pH, EC, TDS, Ca, Mg, Na, Cl, HCO3, SO4, and NO3 were assessed in this study. Information maps of the study area have been actually prepared to make use of the GIS spatial
... Show MoreClassifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and
... Show MoreAn Experimental comparison between the current-voltage
characteristic and the efficiency conversion from solar to electric energy were studied for square and circular single crystal silicon solar
cell of equal area (35.28 cm2) . The results show that the solar shape is
an important factor in calculating the current-voltage characteristics and efficiency of the solar cell. It was shown that the performance effici
... Show MoreSoftware-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show MoreTo investigate the activity and role of certain enzyme markers in 30 patients female with breast cancer (non-treated, treated, and treatment with recovered).The serum activity of enzyme tumor markers (ALP, GPT and GOT) of (30) patients with breast cancer, and (7) healthy control subjects by using statistical analysis: There is significant difference higher in activity of serum enzyme tumor markers (ALP, GPT, and GOT) in all patients as compared with healthy control
Rheumatoid arthritis (AR) is one of the chronic diseases resulting in many complications such as cardiovascular disease (CVD). Any change in the lipid profiles and myocardial markers indicates cardiovascular disease risk, so this study is designed to monitor the pattern of lipid profiles and myocardial markers in newly diagnosed RA patients. Blood samples were collected from 70 Iraqi patients newly diagnosed with rheumatoid arthritis (male and female) and 30 healthy served as control. These individuals were aged 35-65 years. The serum samples were obtained to determine myocardial markers; included troponin, creatinine kinase (CK), lactate dehydrogenase (LDH), and glutamic oxaloacetic transaminase GOT; and lipid profiles; such as choleste
... Show More