The Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimating the scale parameter of the Weibull distribution. To evaluate their performance, we generate simulated datasets with different sample sizes and varying parameter values. A technique for pre-estimation shrinkage is suggested to enhance the precision of estimation. Simulation experiments proved that the Bayesian shrinkage estimator and shrinkage preestimation under the squared loss function method are better than the other methods because they give the least mean square error. Overall, our findings highlight the advantages of shrinkage Bayesian estimation methods for the proposed distribution. Researchers and practitioners in fields reliant on extreme value analysis can benefit from these findings when selecting appropriate Bayesian estimation techniques for modeling extreme events accurately and efficiently.
An experiment was carried out in the vegetables field of Horticulture Department / College of Agriculture / Baghdad University , for the three seasons : spring and Autumn of 2005 , and spring of 2007 , to study the type of gene action in some traits of vegetative , flowery growth , yield and its components in summer squash crosses (4 x 3 = cross 1 , 3 x 7 = cross 2 , 3 x 4 = cross 3 , 3 x 5 = cross 4 , 5 x 1= cross 5 , 5 x 2 = cross 6). The study followed generation mean analysis method which included to each cross (P1 , P2 , F1 , F2 , Bc1P1 , Bc1P2) , and those populations obtained by hybridization during the first and second seasons. Experimental comparison was performed in the second (Two crosses only) and third seasons , (four crosses)
... Show MoreThe present study experimentally and numerically investigated the impact behavior of composite reinforced concrete (RC) beams with the pultruded I-GFRP and I-steel beams. Eight specimens of two groups were cast in different configurations. The first group consisted of four specimens and was tested under static load to provide reference results for the second group. The four specimens in the second group were tested first under impact loading and then static loading to determine the residual static strengths of the impacted specimens. The test variables considered the type of encased I-section (steel and GFRP), presence of shear connectors, and drop height during impact tests. A mass of 42.5 kg was dropped on the top surface at the m
... Show MoreBackground: Rehabilitation of the carious tooth to establish tooth structure integrity required cavity design that show a benign stress distribution. The aim of this study was to investigate the influence of the cavity position on the stress values in the reamining tooth structure restored with amalgam or resin composite. Materials and methods: Seven 2-D models of maxillary first premolar include class I cavity design was prepared, one sound tooth (A) 3 composite (B1, B2, and B3) and 3 amalgam (C1, C2, and C3). In design (BI and C1) the cavity position is in the mid distance between bacc-lingual cusp tip, design (B2 and C2) and (B3 and C3) shifted toward the buccal cusp and the lingual cusp for 0.5 mm respectively. One hundred N vertical
... Show MoreIn this paper, compared eight methods for generating the initial value and the impact of these methods to estimate the parameter of a autoregressive model, as was the use of three of the most popular methods to estimate the model and the most commonly used by researchers MLL method, Barg method and the least squares method and that using the method of simulation model first order autoregressive through the design of a number of simulation experiments and the different sizes of the samples.
Objective: The evaluation of serum osteocalcin (OSN) for Iraqi infertile patients to see the effect of osteocalcin insufficiency, which may lead to a decreased level of testosterone production in males that may cause infertility. Methods: Forty two newly diagnosed infertile males age range (24–47) years and thirty two apparently healthy males as controls age range (25–58) years. Serum levels of testosterone (TEST), stimulating follicle hormone (FSH) and luteinizing hormone (LH), prolactin (PROL), osteocalcin OSN, and fasting blood sugar (FBS) were performed in both patients and controls. Estimation of serum OSN by Immulite1000 auto-analyzer, TEST, FSH, LH, PROL, and FBS by Immulite2000 auto-analyzer. Results: Infertile patients
... Show MoreWeibull Distribution is one of most important distribution and it is mainly used in reliability and in distribution of life time. The study handled two parameter and three-parameter Weibull Distribution in addition to five –parameter Bi-Weibull distribution. The latter being very new and was not mentioned before in many of the previous references. This distribution depends on both the two parameter and the three –parameter Weibull distributions by using the scale parameter (α) and the shape parameter (b) in the first and adding the location parameter (g)to the second and then joining them together to produce a distribution with five parameters.
... Show MoreA space X is named a πp – normal if for each closed set F and each π – closed set F’ in X with F ∩ F’ = ∅, there are p – open sets U and V of X with U ∩ V = ∅ whereas F ⊆ U and F’ ⊆ V. Our work studies and discusses a new kind of normality in generalized topological spaces. We define ϑπp – normal, ϑ–mildly normal, & ϑ–almost normal, ϑp– normal, & ϑ–mildly p–normal, & ϑ–almost p-normal and ϑπ-normal space, and we discuss some of their properties.