The Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimating the scale parameter of the Weibull distribution. To evaluate their performance, we generate simulated datasets with different sample sizes and varying parameter values. A technique for pre-estimation shrinkage is suggested to enhance the precision of estimation. Simulation experiments proved that the Bayesian shrinkage estimator and shrinkage preestimation under the squared loss function method are better than the other methods because they give the least mean square error. Overall, our findings highlight the advantages of shrinkage Bayesian estimation methods for the proposed distribution. Researchers and practitioners in fields reliant on extreme value analysis can benefit from these findings when selecting appropriate Bayesian estimation techniques for modeling extreme events accurately and efficiently.
Desert truffle is considered as a type of Syrian wild fungi that spreads heavily, and it occupies important rank in folk medicine, where its aqueous extract is used for the treatment of some eye and skin illnesses, and people prefer the use of black truffle. This work interested in studying of the most available species; Terfezia claveryi (black) and Tirmania pinoyi (white). The extracts of the two species of truffle were prepared by maceration with water, methanol, and ethanol 70%. Their total phenolic contents (TPC) and total flavonoid contents (TFC) were analyzed using Folin-ciocalteu and Aluminum chloride methods respectively, and their antioxidant activities was tested using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and
... Show MoreIn this study, mean free path and positron elastic-inelastic scattering are modeled for the elements hydrogen (H), carbon (C), nitrogen (N), oxygen (O), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K) and iodine (I). Despite the enormous amounts of data required, the Monte Carlo (MC) method was applied, allowing for a very accurate simulation of positron interaction collisions in live cells. Here, the MC simulation of the interaction of positrons was reported with breast, liver, and thyroid at normal incidence angles, with energies ranging from 45 eV to 0.2 MeV. The model provides a straightforward analytic formula for the random sampling of positron scattering. ICRU44 was used to compile the elemental composition data. In this
... Show MoreLow-Density-Parity-Check (LDPC) codes are a cornerstone for achieving robust error correction capabilities in 5G New Radio applications, significantly improving the reliability of data transmission across noisy and unpredictable wireless channels. Since an evaluation and discussion of the performance with channel coding is significantly absent in two-dimensional Index Modulation (IM)-Differential Chaos Shift Keying (DCSK) schemes. Therefore, in this study, the 5G new radio LDPC codes based generalized joint subcarrier-time index modulation DCSK system (5G NR-LDPC-GJSTIM-DCSK) is proposed, where 5G NR-LDPC codes are used as channel coding. The aim is to improve the system’s performance specifically across AWGN (additive white gauss
... Show MoreThe current study focuses on utilizing artificial intelligence (AI) techniques to identify the optimal locations of production wells and types for achieving the production company’s primary objective, which is to increase oil production from the Sa’di carbonate reservoir of the Halfaya oil field in southeast Iraq, with the determination of the optimal scenario of various designs for production wells, which include vertical, horizontal, multi-horizontal, and fishbone lateral wells, for all reservoir production layers. Artificial neural network tool was used to identify the optimal locations for obtaining the highest production from the reservoir layers and the optimal well type. Fo
In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between the met
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
Dentures that are not cleaning and maintained properly may prone to contamination by different microbial pathogens that result in several oral conditions. This study was design to compare the antimicrobial effect of different denture cleansers oxalic, tartaric, citric acids and alkaline peroxide with microwave irradiation on the growth of Candida albicans and Staphylococcus aureus respectively. Microwave oven used to disinfect specimens of heat-activated acrylic resin and soft linear. Oxalic, citric, tartaric acids, and alkaline peroxide were also used. Microorganisms that tested were Candida albicans and Staphylococcus aureus separately. Treatment with microwave or tartaric acid could achieve sterilization of both hot cured acrylic resins
... Show MoreSimplification of new fashion design methods