The Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimating the scale parameter of the Weibull distribution. To evaluate their performance, we generate simulated datasets with different sample sizes and varying parameter values. A technique for pre-estimation shrinkage is suggested to enhance the precision of estimation. Simulation experiments proved that the Bayesian shrinkage estimator and shrinkage preestimation under the squared loss function method are better than the other methods because they give the least mean square error. Overall, our findings highlight the advantages of shrinkage Bayesian estimation methods for the proposed distribution. Researchers and practitioners in fields reliant on extreme value analysis can benefit from these findings when selecting appropriate Bayesian estimation techniques for modeling extreme events accurately and efficiently.
Unconfined Compressive Strength is considered the most important parameter of rock strength properties affecting the rock failure criteria. Various research have developed rock strength for specific lithology to estimate high-accuracy value without a core. Previous analyses did not account for the formation's numerous lithologies and interbedded layers. The main aim of the present study is to select the suitable correlation to predict the UCS for hole depth of formation without separating the lithology. Furthermore, the second aim is to detect an adequate input parameter among set wireline to determine the UCS by using data of three wells along ten formations (Tanuma, Khasib, Mishrif, Rumaila, Ahmady, Maudud, Nahr Um
... Show MoreChromatographic and spectrophotometric methods for the estimation of mebendazole in
pharmaceutical products were developed. The flow injection method was based on the oxidation of
mebendazole by a known excess of sodium hypochlorite at pH=9.5. The excess sodium hypochlorite is then
reacted with chloranilic acid (CAA) to bleach out its color. The absorbance of the excess CAA was recorded
at 530 nm. The method is fast, simple, selective, and sensitive. The chromatographic method was carried out
on a Varian C18 column. The mobile phase was a mixture of acetonitrile (ACN), methanol (MeOH), water
and triethylamine (TEA), (56% ACN, 20% MeOH, 23.5% H2O, 0.5% TEA, v/v), adjusted to pH = 3.0 with
1.0 M hy
We propose two simple, rapid, and convenient spectrophotometric methods which are described for the determination of cephalexin in bulk and its pharmaceutical preparations. They are based on the measurement of the flame atomic emission of potassium ion (in the first method) and colorimetric determination of the green colored solution at 610 nm formed after the reaction of cephalexin with potassium permanganate as an oxidant agent (in the second method) in basic medium. The working conditions of the methods are investigated and optimized. Beer's law plot shows a good correlation in the concentration range of 5-40?g ml-1. The detection limits are 2.573,2.814 ?g ml-1 for the flame emission photometric method and 1.844,2.016 ?g ml-1 for colo
... Show MoreWithin this work, to promote the efficiency of organic-based solar cells, a series of novel A-π-D type small molecules were scrutinised. The acceptors which we designed had a moiety of N, N-dimethylaniline as the donor and catechol moiety as the acceptor linked through various conjugated π-linkers. We performed DFT (B3LYP) as well as TD-DFT (CAM-B3LYP) computations using 6-31G (d,p) for scrutinising the impact of various π-linkers upon optoelectronic characteristics, stability, and rate of charge transport. In comparison with the reference molecule, various π-linkers led to a smaller HOMO–LUMO energy gap. Compared to the reference molecule, there was a considerable red shift in the molecules under study (A1–A4). Therefore, based on
... Show MoreThe best proximity point is a generalization of a fixed point that is beneficial when the contraction map is not a self-map. On other hand, best approximation theorems offer an approximate solution to the fixed point equation . It is used to solve the problem in order to come up with a good approximation. This paper's main purpose is to introduce new types of proximal contraction for nonself mappings in fuzzy normed space and then proved the best proximity point theorem for these mappings. At first, the definition of fuzzy normed space is given. Then the notions of the best proximity point and - proximal admissible in the context of fuzzy normed space are presented. The notion of α ̃–ψ ̃- proximal contractive mapping is introduced.
... Show MoreThis study was carried out to measure the percentage of heavy metals pollution in the water of the Diyala river and to measure the percentage of contamination of these elements in the leafy vegetables grown on both sides of the Diyala river, which are irrigated by the contaminated river water (celery, radish, lepidium, green onions, beta vulgaris subsp, and malva). Laboratory analysis was achieved to measure the ratio of heavy element contamination (Pb, Fe, Ni, Cd, Zn and Cr) using flame atomic absorption spectrophotometer during the summer months of July and August for the year 2017. The study showed that the elements of zinc, chromium, nickel and cadmium were high concentrations and exceeded. The maximum concentration of these
... Show More