Invasomes are newly developed types of nanovesicles. A vesicular drug delivery system is considered one of the approaches for transdermal delivery to enhance permeation and improve drug bioavailability. Ondansetron is a serotonin receptor antagonist used for treating vomiting associated with different clinical cases. The study aimed to prepare invasomal dispersions for improving permeation of ondansetron across the skin with a controlled release pattern. Twenty-seven formulas of ondansetron-loaded invasomes were prepared by a modified mechanical dispersion method. These formulas were optimized by studying the effect of variables on entrapment efficiency. Vesicle size, polydispersity, zeta potential, in-vitro release and ex-vivo permeation studies were done for the optimized formulas. The selected formula was )F25( had )88.24%±0.04 (entrapment, (317.7 nm) vesicle size, (0.29) polydispersity, and (-31.5mV) zeta potential. In-vitro release study showed That (F25) had 75% release after (12) hrs., and dissolution followed the Korsmeyer-Peppas model with anomalous diffusion. Ex-vivo permeation study showed steady-state flux was 340.2 µg/cm2.hr with no lag time using rat skin tissue. A transmission electron microscope was done to visualize the selected formula. Invasomes are considered promising drug delivery systems for transdermal delivery of ondansetron, ensuring efficient permeation with a sustained release pattern.
Due to the huge variety of 5G services, Network slicing is promising mechanism for dividing the physical network resources in to multiple logical network slices according to the requirements of each user. Highly accurate and fast traffic classification algorithm is required to ensure better Quality of Service (QoS) and effective network slicing. Fine-grained resource allocation can be realized by Software Defined Networking (SDN) with centralized controlling of network resources. However, the relevant research activities have concentrated on the deep learning systems which consume enormous computation and storage requirements of SDN controller that results in limitations of speed and accuracy of traffic classification mechanism. To fill thi
... Show MoreThis research deals with the qualitative and quantitative interpretation of Bouguer gravity anomaly data for a region located to the SW of Qa’im City within Anbar province by using 2D- mapping methods. The gravity residual field obtained graphically by subtracting the Regional Gravity values from the values of the total Bouguer anomaly. The residual gravity field processed in order to reduce noise by applying the gradient operator and 1st directional derivatives filtering. This was helpful in assigning the locations of sudden variation in Gravity values. Such variations may be produced by subsurface faults, fractures, cavities or subsurface facies lateral variations limits. A major fault was predicted to extend with the direction NE-
... Show MoreStudy of determining the optimal future field development has been done in a sector of South Rumaila oil field/ main pay. The aspects of net present value (economic evaluation) as objective function have been adopted in the present study.
Many different future prediction cases have been studied to determine the optimal production future scenario. The first future scenario was without water injection and the second and third with 7500 surface bbls/day and 15000 surface bbls/day water injection per well, respectively. At the beginning, the runs have been made to 2028 years, the results showed that the optimal future scenario is continuing without water in
Accurate prediction of river water quality parameters is essential for environmental protection and sustainable agricultural resource management. This study presents a novel framework for estimating potential salinity in river water in arid and semi‐arid regions by integrating a kernel extreme learning machine (KELM) with a boosted salp swarm algorithm based on differential evolution (KELM‐BSSADE). A dataset of 336 samples, including bicarbonate, calcium, pH, total dissolved solids and sodium adsorption ratio, was collected from the Idenak station in Iran and was used for the modelling. Results demonstrated that KELM‐BSSADE outperformed models such as deep random vector funct
This study is planned with the aim of constructing models that can be used to forecast trip production in the Al-Karada region in Baghdad city incorporating the socioeconomic features, through the use of various statistical approaches to the modeling of trip generation, such as artificial neural network (ANN) and multiple linear regression (MLR). The research region was split into 11 zones to accomplish the study aim. Forms were issued based on the needed sample size of 1,170. Only 1,050 forms with responses were received, giving a response rate of 89.74% for the research region. The collected data were processed using the ANN technique in MATLAB v20. The same database was utilized to