This study was aimed to reduce the amount of the sprayed solution lost during trees spraying. At the same time, the concentration of the sprayed solution on the target (tree or bush) must be ensured and to find the best combination of treatments. Two factors controls the spraying process: (i) spraying speed (1.2 km/h, 2.4 km/h, 3.6 km/h), and (ii) the type of sensor. The test results showed a significant loss reduction percentage. It reached (6.05%, 5.39% and 2.05%) at the speed (1.2 km/h, 2.4 km/h, 3.6 km/h), respectively. It was noticed that when the speed becomes higher the loss becomes less accordingly. The interaction between the 3.6 km/h speed and the type of Ultrasonic sensor led to a decrease in the percentage of the spray
... Show MoreThis paper describes the use of microcomputer as a laboratory instrument system. The system is focused on three weather variables measurement, are temperature, wind speed, and wind direction. This instrument is a type of data acquisition system; in this paper we deal with the design and implementation of data acquisition system based on personal computer (Pentium) using Industry Standard Architecture (ISA)bus. The design of this system involves mainly a hardware implementation, and the software programs that are used for testing, measuring and control. The system can be used to display the required information that can be transferred and processed from the external field to the system. A visual basic language with Microsoft foundation cl
... Show MoreThe development of economic and environmentally friendly extractants to recover cobalt metal is required due to the increasing demand for this metal. In this study, solvent extraction of Co(II) from aqueous solution using a mixture of N,N0-carbonyl difatty amides (CDFAs) synthesised from palm oil as the extractant was carried out. The effects of various parameters such as acid, contact time, extractant concentration, metal ion concentration and stripping agent and the separation of Co(II) from other metal ions such as Fe(II), Ni(II), Zn(III) and Cd(II) were investigated. It was found that the extraction of Co(II) into the organic phase involved the formation of 1:1 complexes. Co(II) was successfully separated from commonly associated metal
... Show MoreTwo methods were established to separate cobalt from the spent catalyst CoMo which also contain Co, Al and Fe. The first method was the precipitation technique by controlling the pH. At pH 5, 76% of the cobalt which was collected with 1.4% Al and 0.5% Fe as contaminants. The second method was the anion exchange by using Amberlite 400 resin, 100% of the cobalt and was collected with 99.46% purity.The only contaminant was Fe with 0.54% with no Al. For a large scale production of cobalt from this spent catalyst, a batch process was designed with a production of 80 grams per batch by using the anion exchange technique. Kilograms quantities of Co were collected.
Background: Atherosclerosis is well known related to age and certain cardiovascular diseases. Aging is one reason of arteries function deterioration which can cause loss of compliance and plaque accumulation, this effect increases by the presence of certain diseases such as hypertension and diabetes disease. Aim: To investigate the reduction of blood supply to the brain in patients with diabetes and hypertension with age and the role of resistive index in the diagnosis of reduced blood flow. Method: Patients with both diseases diabetic and hypertension were classified according to their age to identify the progression of the disease and factors influencing the carotid artery blood flow. By using ultrasound and standard Doppler techniq
... Show MorePhotonic Crystal Fiber Interferometers (PCFIs) are widely used for sensing applications. This work presents the fabrication and the characterization of a relative humidity sensor based on a polymer-coated photonic crystal fiber that operates in a Mach- Zehnder Interferometer (MZI) transmission mode. The fabrication of the sensor involved splicing a short (1 cm) length of Photonic Crystal Fiber (PCF) between two single-mode fibers (SMF). It was then coated with a layer of agarose solution. Experimental results showed that a high humidity sensitivity of 29.37 pm/%RH was achieved within a measurement range of 27–95%RH. The sensor also showed good repeatability, small size, measurement accuracy and wide humidity range. The RH sensitivity o
... Show MorePhotonic Crystal Fiber Interferometers (PCFIs) are widely used for sensing applications. This work presents the fabrication and study the characterization of a relative humidity sensor based on a polymer-infiltrated photonic crystal fiber that operates in a Mach- Zehnder Interferometer (MZI) reflection mode. The fabrication of the sensor only involves splicing and cleaving Photonic Crystal Fiber (PCF) with Single Mode Fiber (SMF). A stub of (LMA-10) PCF spliced to SMF (Corning-28). In the splice regions. The PCFI sensor operation based on the adsorption and desorption of water vapour at the silica-air interface within the PCF. The sensor shows a high sensitivity to RH variations from (27% RH - 95% RH), with a change in its reflected powe
... Show MoreRoughness length is one of the key variables in micrometeorological studies and environmental studies in regards to describing development of cities and urban environments. By utilizing the three dimensions ultrasonic anemometer installed at Mustansiriyah university, we determined the rate of the height of the rough elements (trees, buildings and bridges) to the surrounding area of the university for a radius of 1 km. After this, we calculated the zero-plane displacement length of eight sections and calculated the length of surface roughness. The results proved that the ranges of the variables above are ZH (9.2-13.8) m, Zd (4.3-8.1) m and Zo (0.24-0.48) m.
The Hubble telescope is characterized by the accuracy of the image formed in it, as a result of the fact that the surrounding environment is free of optical pollutants. Such as atmospheric gases and dust, in addition to light pollution emanating from industrial and natural light sources on the earth's surface. The Hubble telescope has a relatively large objective lens that provides appropriate light to enter the telescope to get a good image. Because of the nature of astronomical observation, which requires sufficient light intensity emanating from celestial objects (galaxies, stars, planets, etc.). The Hubble telescope is classified as type of the Cassegrain reflecting telescopes, which gives it the advantage of eliminating chromat
... Show More