Intended for getting good estimates with more accurate results, we must choose the appropriate method of estimation. Most of the equations in classical methods are linear equations and finding analytical solutions to such equations is very difficult. Some estimators are inefficient because of problems in solving these equations. In this paper, we will estimate the survival function of censored data by using one of the most important artificial intelligence algorithms that is called the genetic algorithm to get optimal estimates for parameters Weibull distribution with two parameters. This leads to optimal estimates of the survival function. The genetic algorithm is employed in the method of moment, the least squares method and the weighted least squares method and getting on more efficient estimators than classical methods. Then, a comparison will be made between the methods depending on the experimental side. The best method is evaluated based on mean square error of the survival function and the methods will be applied to real data for patients with lung and bronchia cancer
The Influence of Some Vitamins and Biochemical Parameters on Iraqi Females’ Patients with Malignant Breast Cancer"
Geographic Information Systems (GIS) are obtaining a significant role in handling strategic applications in which data are organized as records of multiple layers in a database. Furthermore, GIS provide multi-functions like data collection, analysis, and presentation. Geographic information systems have assured their competence in diverse fields of study via handling various problems for numerous applications. However, handling a large volume of data in the GIS remains an important issue. The biggest obstacle is designing a spatial decision-making framework focused on GIS that manages a broad range of specific data to achieve the right performance. It is very useful to support decision-makers by providing GIS-based decision support syste
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
Features is the description of the image contents which could be corner, blob or edge. Corners are one of the most important feature to describe image, therefore there are many algorithms to detect corners such as Harris, FAST, SUSAN, etc. Harris is a method for corner detection and it is an efficient and accurate feature detection method. Harris corner detection is rotation invariant but it isn’t scale invariant. This paper presents an efficient harris corner detector invariant to scale, this improvement done by using gaussian function with different scales. The experimental results illustrate that it is very useful to use Gaussian linear equation to deal with harris weakness.
In this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained
The research aims to identify ways of upgrading the quality level of university education at the Middle Technical University in light of its application for the National Ranking project for the quality of Iraqi universities in order to obtain advanced grades among the Iraqi universities , Which is qualified to enter the Ranking of universities worldwide, through displaying the mechanism of the Application of National Ranking project for the quality of Iraqi universities in the Middle Technical University and its formations consisting of (5) technical colleges and (11) technical institute.
The results of the application showed several observations: The most
... Show MoreThis study included effect of polyherbs mixture treatment of diabetic patients type II for two months. The polyherbs mixture contains Nigella sativa seeds, Boswellia carterri gum, Citrus aurantifolia fruits, Elettaria cardamomum fruits. Also this study included estimation of some biochemical parameters in the serum Diabetes Mellitus (D.M.) patients-type II and knowing the relationship of these parameters with this disease. The parameters are glucose, cholesterol ,High density , Low density lipoproteins( HDL-C, LDL-C) respectively , Triglycerides TG, urea, total protein , albumin , Alkaline phosphatase ALP,Transaminase GOT, GPT enzymes . Take (77) samples of diabetic patients serum type II which included (47) samples for group one: herbs
... Show MoreAbstract: Word sense disambiguation (WSD) is a significant field in computational linguistics as it is indispensable for many language understanding applications. Automatic processing of documents is made difficult because of the fact that many of the terms it contain ambiguous. Word Sense Disambiguation (WSD) systems try to solve these ambiguities and find the correct meaning. Genetic algorithms can be active to resolve this problem since they have been effectively applied for many optimization problems. In this paper, genetic algorithms proposed to solve the word sense disambiguation problem that can automatically select the intended meaning of a word in context without any additional resource. The proposed algorithm is evaluated on a col
... Show MoreThe 3-parameter Weibull distribution is used as a model for failure since this distribution is proper when the failure rate somewhat high in starting operation and these rates will be decreased with increasing time .
In practical side a comparison was made between (Shrinkage and Maximum likelihood) Estimators for parameter and reliability function using simulation , we conclude that the Shrinkage estimators for parameters are better than maximum likelihood estimators but the maximum likelihood estimator for reliability function is the better using statistical measures (MAPE)and (MSE) and for different sample sizes.
Note:- ns : small sample ; nm=median sample
... Show More