Intended for getting good estimates with more accurate results, we must choose the appropriate method of estimation. Most of the equations in classical methods are linear equations and finding analytical solutions to such equations is very difficult. Some estimators are inefficient because of problems in solving these equations. In this paper, we will estimate the survival function of censored data by using one of the most important artificial intelligence algorithms that is called the genetic algorithm to get optimal estimates for parameters Weibull distribution with two parameters. This leads to optimal estimates of the survival function. The genetic algorithm is employed in the method of moment, the least squares method and the weighted least squares method and getting on more efficient estimators than classical methods. Then, a comparison will be made between the methods depending on the experimental side. The best method is evaluated based on mean square error of the survival function and the methods will be applied to real data for patients with lung and bronchia cancer
Maximizing the net present value (NPV) of oil field development is heavily dependent on optimizing well placement. The traditional approach entails the use of expert intuition to design well configurations and locations, followed by economic analysis and reservoir simulation to determine the most effective plan. However, this approach often proves inadequate due to the complexity and nonlinearity of reservoirs. In recent years, computational techniques have been developed to optimize well placement by defining decision variables (such as well coordinates), objective functions (such as NPV or cumulative oil production), and constraints. This paper presents a study on the use of genetic algorithms for well placement optimization, a ty
... Show MoreCancer is one of the dangerous diseases that afflict a person through injury to cells and tissues in the body, where a person is vulnerable to infection in any age group, and it is not easy to control and multiply between cells and spread to the body. In spite of the great progress in medical studies interested in this aspect, the options for those with this disease are few and difficult, as they require significant financial costs for health services and for treatment that is difficult to provide.
This study dealt with the determinants of liver cancer by relying on the data of cancerous tumours taken from the Iraqi Center for Oncology in the Ministry of Health 2017. Survival analysis has been used as a m
... Show MoreAbstract
The research to have a clear perceptions about the knowledge value added to assess the knowledge resources of the Iraqi private banks, depending on the value added methodology of the proposed defined (Housel & Bell, 2001), which assumes that the knowledge value added come through synergetic relationship between knowledge resource and information technology, trying to the possibility of mainstream theory and its application in the Iraqi environment and interpretation of results, and on this basis was launched search of a research problem took root synergetic nature of the relationship between knowledge (human) resource and
... Show MoreIn this paper, we derived an estimator of reliability function for Laplace distribution with two parameters using Bayes method with square error loss function, Jeffery’s formula and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived Bayesian estimator compared to the maximum likelihood of this function and moment method using simulation technique by Monte Carlo method under different Laplace distribution parameters and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator and moment estimator in all samples sizes
Forecasting is one of the important topics in the analysis of time series, as the importance of forecasting in the economic field has emerged in order to achieve economic growth. Therefore, accurate forecasting of time series is one of the most important challenges that we seek to make the best decision, the aim of the research is to suggest employing hybrid models to predict daily crude oil prices. The hybrid model consists of integrating the linear component, which represents Box Jenkins models, and the non-linear component, which represents one of the methods of artificial intelligence, which is the artificial neural network (ANN), support vector regression (SVR) algorithm and it was shown that the proposed hybrid models in the predicti
... Show MoreThe importance of forecasting has emerged in the economic field in order to achieve economic growth, as forecasting is one of the important topics in the analysis of time series, and accurate forecasting of time series is one of the most important challenges in which we seek to make the best decision. The aim of the research is to suggest the use of hybrid models for forecasting the daily crude oil prices as the hybrid model consists of integrating the linear component, which represents Box Jenkins models and the non-linear component, which represents one of the methods of artificial intelligence, which is long short term memory (LSTM) and the gated recurrent unit (GRU) which represents deep learning models. It was found that the proposed h
... Show MoreThis paper deals with aesthetic and a sitting position in contemporary Iraqi sculpture and studied this situation, an analytical study to reveal how to employ them in aesthetically pleasing work of art has been research in a sitting position to a lack of technical library for such research, this study includes four chaptersChapter I contains the research problem and its importance in terms of the released address and its objectives in the detection of this situation, how to employ the HDL research is to detect how the aesthetic of the Employment sit position and limits Find business is bronze and stone-dimensional exclusively carried out from 2000 to 2009 AD.Chapter II included the Framework theory and previous studies and with three Inv
... Show MoreThe purpose of this paper is applying the robustness in Linear programming(LP) to get rid of uncertainty problem in constraint parameters, and find the robust optimal solution, to maximize the profits of the general productive company of vegetable oils for the year 2019, through the modify on a mathematical model of linear programming when some parameters of the model have uncertain values, and being processed it using robust counterpart of linear programming to get robust results from the random changes that happen in uncertain values of the problem, assuming these values belong to the uncertainty set and selecting the values that cause the worst results and to depend buil
... Show MoreRadiation therapy plays an important role in improving breast cancer cases, in order to obtain an appropriateestimate of radiation doses number given to the patient after tumor removal; some methods of nonparametric regression werecompared. The Kernel method was used by Nadaraya-Watson estimator to find the estimation regression function forsmoothing data based on the smoothing parameter h according to the Normal scale method (NSM), Least Squared CrossValidation method (LSCV) and Golden Rate Method (GRM). These methods were compared by simulation for samples ofthree sizes, the method (NSM) proved to be the best according to average of Mean Squares Error criterion and the method(LSCV) proved to be the best according to Average of Mean Absolu
... Show More