Preferred Language
Articles
/
ChdFlY4BVTCNdQwCvFVy
Employment of the genetic algorithm in some methods of estimating survival function with application

Intended for getting good estimates with more accurate results, we must choose the appropriate method of estimation. Most of the equations in classical methods are linear equations and finding analytical solutions to such equations is very difficult. Some estimators are inefficient because of problems in solving these equations. In this paper, we will estimate the survival function of censored data by using one of the most important artificial intelligence algorithms that is called the genetic algorithm to get optimal estimates for parameters Weibull distribution with two parameters. This leads to optimal estimates of the survival function. The genetic algorithm is employed in the method of moment, the least squares method and the weighted least squares method and getting on more efficient estimators than classical methods. Then, a comparison will be made between the methods depending on the experimental side. The best method is evaluated based on mean square error of the survival function and the methods will be applied to real data for patients with lung and bronchia cancer

Scopus
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
Determination Optimum Inventory Level for Material Using Genetic Algorithm

The integration of decision-making will lead to the robust of its decisions, and then determination optimum inventory level to the required materials to produce and reduce the total cost by the cooperation of purchasing department with inventory department and also with other company,s departments. Two models are suggested to determine Optimum Inventory Level (OIL), the first model (OIL-model 1) assumed that the inventory level for materials quantities equal to the required materials, while the second model (OIL-model 2) assumed that the inventory level for materials quantities more than the required materials for the next period.             &nb

... Show More
View Publication Preview PDF
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
A Decision Tree-Aware Genetic Algorithm for Botnet Detection

     In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets  namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant

... Show More
Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun May 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Effect of Genetic Algorithm as a Feature Selection for Image Classification

     Analysis of image content is important in the classification of images, identification, retrieval, and recognition processes. The medical image datasets for content-based medical image retrieval (  are large datasets that are limited by high computational costs and poor performance. The aim of the proposed method is to enhance this image retrieval and classification by using a genetic algorithm (GA) to choose the reduced features and dimensionality. This process was created in three stages. In the first stage, two algorithms are applied to extract the important features; the first algorithm is the Contrast Enhancement method and the second is a Discrete Cosine Transform algorithm. In the next stage, we used datasets of the medi

... Show More
Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun May 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On-Line Navigational Problem of a Mobile Robot Using Genetic Algorithm

  Manufacturing systems of the future foresee the use of intelligent vehicles, optimizing and navigating. The navigational problem is an important and challenging problem in the field of robotics. The robots often find themselves in a situation where they must find a trajectory to another position in their environment, subject to constraints posed by obstacles and the capabilities of the robot itself. On-line navigation is a set of algorithms that plans and executes a trajectory at the same time.         The system adopted in this research searches for a robot collision-free trajectory in a dynamic environment in which obstacles can move while the robot was moving toward the target. So, the ro

... Show More
View Publication Preview PDF
Publication Date
Mon May 08 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Using Restricted Least Squares Method to Estimate and Analyze the Cobb-Douglas Production Function with Application

  In this paper, the restricted least squares method is employed to estimate the parameters of the Cobb-Douglas production function and then analyze and interprete the results obtained.         A practical application is performed on the state company for leather industries in Iraq for the period (1990-2010).         The statistical program SPSS is used to perform the required calculations.

View Publication Preview PDF
Publication Date
Fri Aug 01 2008
Journal Name
2008 First International Conference On The Applications Of Digital Information And Web Technologies (icadiwt)
Hybrid canonical genetic algorithm and steepest descent algorithm for optimizing likelihood estimators of ARMA (1, 1) model

This paper presents a hybrid genetic algorithm (hGA) for optimizing the maximum likelihood function ln(L(phi(1),theta(1)))of the mixed model ARMA(1,1). The presented hybrid genetic algorithm (hGA) couples two processes: the canonical genetic algorithm (cGA) composed of three main steps: selection, local recombination and mutation, with the local search algorithm represent by steepest descent algorithm (sDA) which is defined by three basic parameters: frequency, probability, and number of local search iterations. The experimental design is based on simulating the cGA, hGA, and sDA algorithms with different values of model parameters, and sample size(n). The study contains comparison among these algorithms depending on MSE value. One can conc

... Show More
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Thu Aug 01 2019
Journal Name
مجلة العلوم الاقتصادية والإدارية
Improving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application

Improving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application

Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
Variable Selection Using aModified Gibbs Sampler Algorithm with Application on Rock Strength Dataset

Variable selection is an essential and necessary task in the statistical modeling field. Several studies have triedto develop and standardize the process of variable selection, but it isdifficultto do so. The first question a researcher needs to ask himself/herself what are the most significant variables that should be used to describe a given dataset’s response. In thispaper, a new method for variable selection using Gibbs sampler techniqueshas beendeveloped.First, the model is defined, and the posterior distributions for all the parameters are derived.The new variable selection methodis tested usingfour simulation datasets. The new approachiscompared with some existingtechniques: Ordinary Least Squared (OLS), Least Absolute Shrinkage

... Show More
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of classical method and optimization methods for estimating parameters in nonlinear ordinary differential equation

 ABSTRICT:

  This study is concerned with the estimation of constant  and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es

... Show More
Crossref
View Publication Preview PDF