Inthis investigation the epoxy was reinforced by orange peel and carbonized orange peel particles with percentages (5%, 10%, 15% and 20% by weight).Mechanical tests like:Tensile, flexural,Hardness, impact and compression were carried out on these natural epoxy composites. The results showed the tensile strength have a higher value by adding (15% by weight )of orange peel and carbonized orange peel particles to epoxy,while the value (10% by weight ) of addition is suitable to get improvement in the other mechanical properties as flexural strength, Hardness, impact and compressive strength. The epoxy / carbonized orange peel powder have the best valuesin all mechanical properties than that of epoxy/orange peel powder.
Abstract
This research aims to study and improve the passivating specifications of rubber resistant to vibration. In this paper, seven different rubber recipes were prepared based on mixtures of natural rubber(NR) as an essential part in addition to the synthetic rubber (IIR, BRcis, SBR, CR)with different rates. Mechanical tests such as tensile strength, hardness, friction, resistance to compression, fatigue and creep testing in addition to the rheological test were performed. Furthermore, scanning electron microscopy (SEM)test was used to examine the structure morphology of rubber. After studying and analyzing the results, we found that, recipe containing (BRcis) of 40% from th
... Show MoreThe mechanical properties and microstructure of hot-rolled steel are critical in determining its performance in industrial applications, particularly when exposed to elevated temperatures. This study examines the effects of varying temperatures and soaking times on these properties through a series of controlled experiments. The primary objective was to optimize the key response parameters, including tensile strength, yield strength, and elongation, by analyzing the influence of temperature and time. A full factorial design approach was used, applying the desirability function theory to explore all possible combinations and identify optimal processing conditions. The experimental results showed that the soaking time played a critica
... Show MoreAsphalt binder is a thermoplastic material that conducts as an elastic solid at lower service temperatures or throughout fast loading rate. At a high temperature or slow rate of loading, asphalt binder conducts as a different liquid. The classical duplication generates a required to assess the mechanical properties of asphalt concrete at the anticipated service temperature to reduce the stress cracking, which happens at lower temperatures, fatigue, and the plastic deformation at higher temperatures (rutting). In this study, an achievement was made to assess the effect of temperature on the mechanical characteristics of asphalt concrete mixes. A total of 132 asphalt concrete samples were attended utilizing two asphalt cement grades (40-50) a
... Show MoreThe research is dealing with the absorption and fluorescence spectra for the hybrid of an Epoxy Resin doped with organic dye Rhodamine (R6G) of different concentrations (5*10-6, 5*10-5, 1*10-5, 1*10-4, 5*10-4) Mol/ℓ at room temperature. The Quantum efficiency Qfm, the rate of fluorescence emission Kfm (s-1), the non-radiative lifetime τfm (s), fluorescence lifetime τf and the Stokes shift were calculated. Also the energy gap (Eg) for each dye concentration was evaluated. The results showed that the maximum quantum effi
... Show MoreBackground: Poly propylene fibers with and without silane treatment have been used to reinforce heat cure denture base acrylic but, some mechanical properties like transverse strength, impact strength, tensile strength, hardness, wear resistance and wettability. Which are related to the clinical use of the prosthesis are not evaluated yet. The aim of the study is to identify the influence of incorporation of treated and untreated fibers on these properties Materials and methods: Eighty four heat cure acrylic specimens were constructed by conventional flasking technique. They were divided into six groups according to the tests and each group was subdivided into two subgroups control and experimental groups (seven samples for each subgroup
... Show MoreComparison for the optical energy gap between pure
PMMA , PMMA-TiO2 micro composites and PMMA-TiO2 nano
composites have been investigated under uv – radiation , the
effect of time irradiation (0,6,12,24,48,72,96 and 120) have been
studied for these specimens to study the photic stability .The
results show that the photostability of the PMMA-TiO2
nanocomposite is higher than that of the pure PMMA and
PMMA-TiO2 micro composite under UV-light irradiation
To evaluate the bioactivity and the cytocompatibility of experimental Bioglass-reinforced polyethylene-based root-canal filling materials. The thermal properties of the experimental materials were also evaluated using differential scanning calorimetry, while their radiopacity was assessed using a grey-scale value (GSV) aluminium step wedge and a phosphor plate digital system. Bioglass 45S5 (BAG), polyethylene and Strontium oxide (SrO) were used to create tailored composite fibres. The filler distribution within the composites was assessed using SEM, while their bioactivity was evaluated through infrared spectroscopy (FTIR) after storage in simulated body fluid (SBF). The radiopacity of the composite fibres and their thermal properties were
... Show MoreGround state energies and other properties of 2S shell for some atoms as Be(Z=4), B(Z=5), C(Z=6) and N(Z=7) were calculated by using Hartree-Fock wave function. We found the values of potential energies in hartree unit (3.8369, 6.78565, 10.18852 and 14.41089) respectively and the other proprieties like expectation values of the position < r1m > were in agreement with the published results. All the studied atomic properties were normalized.
Background: This study aimed to compare the mechanical properties between four groups of newly fabricated combination wires according to their method of union, according to the gauges of wires and a comparison were made between them and their originals. Materials and method: A total of 60 stainless steel combination wires were fabricated , divided into four groups according to gauge of wires and their method of union, each of them with 15 samples, the groups were welded (0.016x0.022-0.016 and 0.016x0.022-0.018) and soldered (0.016x0.022-0.016 and 0.016x0.022-0.018), samples were made according to certain parameters which were : for the welded samples: length,weight, duration of pulsation and size of copper electrode tips used; for the sold
... Show More