Visualization of subsurface geology is mainly considered as the framework of the required structure to provide distribution of petrophysical properties. The geological model helps to understand the behavior of the fluid flow in the porous media that is affected by heterogeneity of the reservoir and helps in calculating the initial oil in place as well as selecting accurate new well location. In this study, a geological model is built for Qaiyarah field, tertiary reservoir, relying on well data from 48 wells, including the location of wells, formation tops and contour map. The structural model is constructed for the tertiary reservoir, which is an asymmetrical anticline consisting of two domes separated by a saddle. It is found that the three formations in the tertiary reservoir is composed of limestone and dolomitic limestone with very thin shale rims introduced only in the Dhiban Formation, which have the minimum thickness compared to the main other two formations those considered the main reservoir units. Upscaling from the software has been used to distribute and correlate between the logs and core data, which came very acceptable results to be used for distribution to the entire field. Both log analysis and core data have showed that the reservoir is clean formation, no volume of shale has considered in the STIIOP calculations with average water saturation calculated to be 31.5% and average porosity of approximately 22% with temperature gradient of 1.2 °F/100 ft. This comes up with Stock Tank Initial Oil in Place calculated to be 6.519*109.
A geological model is a spatial representation of the distribution of sediments and rocks in the subsurface. Where this study on Halfaya oil field; it is located in Missan governorate, 35 km southeast of the city of Amara. It is one of the main fields in Iraq because it is production high oil. This model contains the structure, and petrophysical properties (porosity, water saturation) in three directions. To build 3D geological models of petroleum reservoirs. Khasib, Tanuma, and Sa’di formations in Halfaya oil field have been divided into many layers depending on petrophysical properties and facies.
Yamama Formation is an important sequence in southern Iraq. Petrographic analysis was used to determine and analyze the microfacies and pore types. The diagenetic processes and the impacts on the petrophysical properties of the rocks were also identified. The petrographic identification was based on data of 250 thin sections of cutting and core samples from four wells that were supplied by the Iraqi Oil Exploration Company (O.E.C). The present study focuses on the depositional environment and the microfacies analysis of Yamama Formation. The results revealed several types of microfacies, including peloidal wackestone-packstone, algal wackestone-packstone, bioclastic wackestone-packstone, fo
... Show MoreThe study includes building a 3-D geological model, which involves get the Petrophysical properties as (porosity, permeability and water saturation). Effective Porosity, water saturation results from log interpretation process and permeability from special correlation using core data and log data. Clay volume can be calculated by six ways using IP software v3.5 the best way was by using gamma Ray. Also, Water Resistivity, flushed zone saturation and bulk volume analysis determined through geological study. Lithology determined in several ways using M-N matrix Identification, Density-Neutron and Sonic-Neutron cross plots. The cut off values are determined by Using EHC (Equivalent Hydra
This study utilizes streamline simulation to model fluid flow in the complex subsurface environment of the Mishrif reservoir in Iraq's Buzurgan oil field. The reservoir faces challenges from high-pressure depletion and a substantial increase in water cut during production, prompting the need for innovative reservoir management. The primary focus is on optimizing water injection procedures to reduce water cuts and enhance overall reservoir performance. Three waterflooding tactics were examined: normal conditions without injectors or producers, normal conditions with 30 injectors and 80 producers and streamline simulation using the frontsim simulator. Three main strategies were employed to streamline water injection in targeted areas.
... Show MoreA 3D geological model for Mishrif Reservoir in Nasiriyah oil field had been invented "designed" "built". Twenty Five wells namely have been selected lying in Nasiriyah Governorate in order to build Structural and petrophysical (porosity and water saturation) models represented by a 3D static geological model in three directions .Structural model showed that Nasiriyah oil field represents anticlinal fold its length about 30 km and the width about 10 km, its axis extends toward NW–SE with structural closure about 65 km . After making zones for Mishrif reservoir, which was divided into 5 zones i.e. (MA zone, UmB 1zone,MmB1 zone ,L.mB1 zone and mB2zone) .Layers were built for each zone depending on petrophysical propertie
... Show MoreStatic reservoir modeling is the interacting and analysis of the geological data to visualize the reservoir framework by three-dimensional model and distribute the static reservoir properties. The Petrel E&P software used to incorporate the data. The interpreted log data and core report used in distribution of petrophysical properties of porosity, water saturation and permeability for Zubair reservoir in Luhais oil field.
The reservoir discretized to 274968 cells in increments of 300, 200 and 1 meter in the direction of X, Y, and Z respectively. The geostatistical approach used in the distribution of the properties of porosity and water saturation overall the reservoir units. The permeability has been calculated
... Show MoreReservoir characterization requires reliable knowledge of certain fundamental properties of the reservoir. These properties can be defined or at least inferred by log measurements, including porosity, resistivity, volume of shale, lithology, water saturation, and permeability of oil or gas. The current research is an estimate of the reservoir characteristics of Mishrif Formation in Amara Oil Field, particularly well AM-1, in south eastern Iraq. Mishrif Formation (Cenomanin-Early Touronin) is considered as the prime reservoir in Amara Oil Field. The Formation is divided into three reservoir units (MA, MB, MC). The unit MB is divided into two secondary units (MB1, MB2) while the unit MC is also divided into two sec
... Show MoreThe Mishrif Formation is one of the most important formation in oil fields, which is located in southern part of Iraq, and it is of Upper Cretaceous age. Tuba field is located nearly 40 km SW – Basrah city. It is bounded from east by Zubair oil field (5 km distance) and from west by Rumaila (2 km distance). The Tuba oil field is situated between Zubair oil field in the east and Rumaila in the west, and is separated by two depressions.
The rock (core and chips) samples have been collected systematically from cores of Mishrif Formation that are available from stores of southern oil company to prepare thin sections and slides—these slides have been examined by using microscope. These samples have been taken from all parts of the rese
Petrophysical properties of Mishrif Formation at Amara oil field is determined
from interpretation of open log data of (Am-1, 2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12
and13) wells. These properties include the total, the effected and the secondary
porosity, as well as the moveable and the residual oil saturation in the invaded and
uninvaded zones. According to petrophysical properties it is possible to divided
Mishrif Formation which has thickness of a proximately 400 m, into seven main
reservoir units (MA, MB11, MB12, MB13, MB21, MC1, MC2) . MA is divided into
four secondary reservoir units , MB11 is divided into five secondary reservoir units ,
MB12 is divided into two secondary reservoir units , MB13 is divided into