Preferred Language
Articles
/
CRhm2ZUBVTCNdQwC3H_K
Development Artificial Neural Network (ANN) computing model to analyses men's 100¬meter sprint performance trends
...Show More Authors

Coaches and analysts face a significant challenge of inaccurate estimation when analyzing Men's 100 Meter Sprint Performance, particularly when there is limited data available. This necessitates the use of modern technologies to address the problem of inaccurate estimation. Unfortunately, current methods used to estimate Men's 100 Meter Sprint Performance indexes in Iraq are ineffective, highlighting the need to adopt new and advanced technologies that are fast, accurate, and flexible. Therefore, the objective of this study was to utilize an advanced method known as artificial neural networks to estimate four key indexes: Accelerate First of 10 meters, Speed Rate, Time First of 10 meters, and Reaction Time. The application of artificial neural networks in the sports industry in the Republic of Iraq is crucial to ensure successful players. In this study, an artificial neural network model was built to predict Men's 100 meter indexes. Several factors related to the construction of artificial neural networks were studied, including network architecture and internal factors and their impact on the performance of the models. As a result, four easy equations were developed to calculate the four key indexes. The findings of the study indicate that these networks can predict Men's 100 Meter indexes with a high degree of reliability 98.034% and accounting coefficients R = 0.9143.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
2018 Ieee/acs 15th International Conference On Computer Systems And Applications (aiccsa)
Utilizing Hopfield Neural Network for Pseudo-Random Number Generator
...Show More Authors

View Publication
Scopus (11)
Crossref (9)
Scopus Crossref
Publication Date
Tue Sep 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Density and Approximation by Using Feed Forward Artificial Neural Networks
...Show More Authors

I n  this  paper ,we 'viii  consider  the density  questions  associC;lted with  the single  hidden layer feed forward  model. We proved  that a FFNN   with   one   hidden   layer  can   uniformly   approximate   any continuous  function  in C(k)(where k is a compact set in R11 ) to any required accuracy.

 

However, if the set of basis function is dense then the ANN's can has al most one hidden layer. But if the set of basis function  non-dense, then we  need more  hidden layers. Also, we have shown  that there exist  localized functions and that there is no t

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2013
Journal Name
Thesis
User Authentication Based on Keystroke Dynamics Using Artificial Neural Networks
...Show More Authors

Computer systems and networks are being used in almost every aspect of our daily life, the security threats to computers and networks have increased significantly. Usually, password-based user authentication is used to authenticate the legitimate user. However, this method has many gaps such as password sharing, brute force attack, dictionary attack and guessing. Keystroke dynamics is one of the famous and inexpensive behavioral biometric technologies, which authenticate a user based on the analysis of his/her typing rhythm. In this way, intrusion becomes more difficult because the password as well as the typing speed must match with the correct keystroke patterns. This thesis considers static keystroke dynamics as a transparent layer of t

... Show More
Publication Date
Tue Nov 09 2021
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Impact Cloud Computing On The Development of Accounting Education: Evidence From Sultanate of Oman
...Show More Authors

Cloud computing is the new technological trend for future generations. It represents a new way to use IT resources more efficiently. Cloud computing is one of the most technological models for developing and exploiting infrastructure resources in the world. Under the cloud, the user no longer needs to look for major financing to purchase infrastructure equipment as companies, especially small and medium-sized ones, can get the equipment as a service, rather than buying it as a product. The idea of ​​cloud computing dates back to the sixties of the last century, but this idea did not come into actual application until the beginning of the third millennium, at the hands of technology companies such as Apple, Hp, IBM, which had

... Show More
View Publication Preview PDF
Publication Date
Mon Jul 18 2022
Journal Name
Ieee Access
Moderately Multispike Return Neural Network for SDN Accurate Traffic Awareness in Effective 5G Network Slicing
...Show More Authors

Due to the huge variety of 5G services, Network slicing is promising mechanism for dividing the physical network resources in to multiple logical network slices according to the requirements of each user. Highly accurate and fast traffic classification algorithm is required to ensure better Quality of Service (QoS) and effective network slicing. Fine-grained resource allocation can be realized by Software Defined Networking (SDN) with centralized controlling of network resources. However, the relevant research activities have concentrated on the deep learning systems which consume enormous computation and storage requirements of SDN controller that results in limitations of speed and accuracy of traffic classification mechanism. To fill thi

... Show More
Scopus (12)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
PDCNN: FRAMEWORK for Potato Diseases Classification Based on Feed Foreword Neural Network
...Show More Authors

         The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work  is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF
Publication Date
Sat Sep 01 2018
Journal Name
2018 11th International Conference On Developments In Esystems Engineering (dese)
Natural Rivers Longitudinal Dispersion Coefficient Simulation Using Hybrid Soft Computing Model
...Show More Authors

View Publication
Scopus (19)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sun Dec 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Solving the Inverse Kinematic Equations of Elastic Robot Arm Utilizing Neural Network
...Show More Authors

The inverse kinematic equation for a robot is very important to the control robot’s motion and position. The solving of this equation is complex for the rigid robot due to the dependency of this equation on the joint configuration and structure of robot link. In light robot arms, where the flexibility exists, the solving of this problem is more complicated than the rigid link robot because the deformation variables (elongation and bending) are present in the forward kinematic equation. The finding of an inverse kinematic equation needs to obtain the relation between the joint angles and both of the end-effector position and deformations variables. In this work, a neural network has been proposed to solve the problem of inverse kinemati

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Diagnosing COVID-19 Infection in Chest X-Ray Images Using Neural Network
...Show More Authors

With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques.  T

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref