Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybrid technique to recognize denial-of-service (DDoS) attacks that combine deep learning and feedforward neural networks as autoencoders. Two datasets were analyzed for the training and testing model, first statically and then iteratively. The auto-encoding model is constructed by stacking the input layer and hidden layer of self-encoding models’ layer by layer, with each self-encoding model using a hidden layer. To evaluate our model, we use a three-part data split (train, test, and validate) rather than the common two-part split (train and test). The resulting proposed model achieved a higher accuracy for the static dataset, where for ISCX-IDS-2012 dataset, accuracy reached a high of 99.35% in training, 99.3% in validation and 99.99% in precision, recall, and F1-score. for the UNSW2018 dataset, the accuracy reached a high of 99.95% in training, 0.99.94% in validation, and 99.99% in precision, recall, and F1-score. In addition, the model achieved great results with a dynamic dataset (using an emulator), reaching a high of 97.68% in accuracy.
The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when
... Show MoreInfection with the protozoan parasite Toxoplasma gondii is widely prevalent in humans and animals. Infection with Toxoplasma may associate with miscarriage in many pregnant women due to infection. In this study, the level of lutetropic hormone (LTH), folliclestimulating hormone (FSH) and luteinizing hormone (LH) was measured in pregnant women suffering from toxoplasmosis using mini-VIDAS®technique. Results showed that pregnant women have high concentration of both LTH and FSH hormone(10.80 ± 6.53) ng/ml and (9.51 ± 2.40) μIU/ml respectively, while the concentration of LH hormone was lower than normal(4.49 ± 0.56) μIU/ml. Such finding is to suggest that infection with T. gondii is interfering with these hormones in pregnant women.
BACKGROUND: HLA-B27 can effect clinical presentation and course of ankylosing spondylitis. Different detection techniques of HLA-B27 are available with variable sensitivities and specificities. OBJECTIVE: To compare serologic and molecular diagnostic techniques of detecting HLA-B27 status and to correlate it with some clinical variables among ankylosing spondylitis patients. PATIENTS AND METHODS: A cross-sectional study was conducted on 83 Iraqi patients with ankylosing spondylitis. Clinical and laboratory evaluations were reported. HLA-B27 status was determined in all patients by real-time PCR using HLA-B27 RealFast™ kit; ELISA method was used as well to detect soluble serum HLA-B27 antigens using Human Leukocyte Antigen® kit. RESULTS:
... Show MoreBackground: Klebsiella pneumoniae were considered as normal flora of skin, and intestine. It can cause damage to human lungs; the danger of this bacterium is related to exposure to the hospital surroundings. materials and methods: the detection of Klebsiella pneumoniae on morphological and biochemical tests and then assured with VITEK 2 system. Resistance to antibiotics was determined by Kirby-Baeur method. And genotyping of IMP-1 in isolates was done by PCR technique, then biofilm formation was identified by Micro titer plate method. Results: The present study included a collecting of 50 specimens from different clinical specimens, (blood 40%, urine 30%, sputum 20%, wound infection 10%); 10 isolates were identified as K
... Show MoreTo investigate the role of IL-6 and IL-8 in the immune-regulatory mechanisms involved in the recurrent spontaneous abortion of the first trimester of pregnancy. Serum level of IL-6 and IL-8 were determined in 25 women of age (20-35) years who had a spontaneous abortion of unknown aetiology during the first trimester of pregnancy .They were compared with the corresponding levels of 20 pregnant and non-pregnant women as control groups .cytokine levels were measured by (ELISA) technique .The women with spontaneous abortion had highly significant (P < 0.01) increased serum level of IL-8 and highly significant (P < 0.01 ) decreased level of IL-6 compared to those with normal pregnant and non-pregnant women. The results of this study ma
... Show MoreBackground: The diagnosis of prostatic pathology may be of challenging , as some difficult and suspected, atypical cases may lack basal cell layer by routine H&E sections . Antibodies against 34BE12(HMW-CK) and p63 aid the diagnosis of such cases , to distinguish benign from malignant prostatic lesions.
Objective: to identify basal cells in atypical prostatic lesions ,and distinguish benign from malignant prostatic lesions.
Type of the study: A retro-spective study.
Methods: 115cases of paraffin embedded prostatic tissue blocks ,diagnosed as : 76 cases were benign prostatic hy
... Show More