Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybrid technique to recognize denial-of-service (DDoS) attacks that combine deep learning and feedforward neural networks as autoencoders. Two datasets were analyzed for the training and testing model, first statically and then iteratively. The auto-encoding model is constructed by stacking the input layer and hidden layer of self-encoding models’ layer by layer, with each self-encoding model using a hidden layer. To evaluate our model, we use a three-part data split (train, test, and validate) rather than the common two-part split (train and test). The resulting proposed model achieved a higher accuracy for the static dataset, where for ISCX-IDS-2012 dataset, accuracy reached a high of 99.35% in training, 99.3% in validation and 99.99% in precision, recall, and F1-score. for the UNSW2018 dataset, the accuracy reached a high of 99.95% in training, 0.99.94% in validation, and 99.99% in precision, recall, and F1-score. In addition, the model achieved great results with a dynamic dataset (using an emulator), reaching a high of 97.68% in accuracy.
To determine the relationship between Helicobacter pylori infection and skin disorders, sixty six patients who suffering from skin diseases include chronic urticarial (CU) and atopic dermatitis (AD) who attended at Dermatological Clinic/ Al-Numan Teaching Hospital from the beginning of October 2015 to the end of January 2016 with age (6-62) have been investigated and compared to twenty two samples of apparently healthy individuals were studied as control group. All the studied groups were subjected to measurement of antiHelicobacter pylori IgG antibodies by enzyme linked immuno sorbent assay (ELISA) and detection of 16S rRNA and CagA genes by using singleplex and multiplex PCR methods. The results of current study revealed that there was a
... Show MoreChronic myelogenous leukemia (CML) is a myeloproliferative neoplasm arises from Bcr-Abl gene translocation (called Ph chromosome) in hematopoietic stem cells (HSCs). This genetic abnormality results in constitutive activation of tyrosine kinase and subsequent uncontrol growth and multiplication of granulocytes. The cornerstone in treatment of CML are tyrosine kinase inhibitors, of which imatinib is the most effectively used. JAK2V617F mutation is an acquired single nucleotide polymorphism (SNP) occurs in JAK2 gene and is associated with many hematological malignancy other than CML. It was thought that the two genetic abnormalities (Bcr-Abl and JAK2V617F) occur mutually; however, growing body of evidences suggested the reverse. This study a
... Show MoreIn this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the curved beam element possesses seven degrees of freedom including the warping degree of freedom. The curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The identification of damage is formulated as an optimization problem, binary and continuous genetic algorithms
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural frequencies, Modal Assurance Criterion MAC). The results show the objective function based on change in natural frequency i
A simple indirect spectrophotometric method for determination of mebendazol in pure and pharmaceutical formulation was presented in this study. UV-Visible spectrophotometry using the optimal conditions was developed for determination of mebendazole in pure drug and different preparation samples. The method is based on the oxidation of drug by nbromosuccinimide with hydrochloric acid and the left amount of oxidizing agent was determined by the reaction with tartarazine and the absorbance was measured at 428 nm. Calibration curves were linear in the range of 5 to 30 µg.mL-1 with molar absorptivity 8437.2 L.mol-1 .cm-1 . The limits of detection and quantification were determined and found to be 0.7770 µg.mL-1 and 2.3400 µg.mL-1 respec
... Show MoreMany pharmaceutical molecules have solubility problems that until yet consist a hurdle that restricts their use in the pharmaceutical preparations. Lacidipine (LCDP) is a calcium-channel blocker with low aqueous solubility and bioavailability.
Lipid dosage forms are attractive delivery systems for such hydrophobic drug molecules. Nanoemulsion (NE) is one of the popular methods that has been used to solve the solubility problems of many drugs. LCDP was formulated as a NE utilizing triacetin as an oil phase, tween 80 and tween 60 as a surfactant and ethanol as a co-surfactant. Nine formulas were prepared, and different tests performed to ensure the stability of the NEs, such as thermodyna
... Show MoreIsradipine related to dihydropyridine (DHP) class of calcium channel blockers (CCBs). It is used to treat hypertension, angina pectoris, as well as Parkinson disease. It goes under the BCS class II drug (low solubility-high permeability). The drug will experience extensive first-pass metabolism in liver, thus, oral bio-availability will be approximately15 to 24 %.
The aim of the study is preparing stable oral oil in water (o/w) nanoemulsion of isradipine to promote the colloidial dispersion of isradipine in the nano range, so that it may be absorded by intestinal lymphatic transport in order to avoid hepatic first-pass metabolism (israpidi
... Show MoreA nonlinear filter for smoothing color and gray images
corrupted by Gaussian noise is presented in this paper. The proposed
filter designed to reduce the noise in the R,G, and B bands of the
color images and preserving the edges. This filter applied in order to
prepare images for further processing such as edge detection and
image segmentation.
The results of computer simulations show that the proposed
filter gave satisfactory results when compared with the results of
conventional filters such as Gaussian low pass filter and median filter
by using Cross Correlation Coefficient (ccc) criteria.