Preferred Language
Articles
/
CRcy-Y0BVTCNdQwCVSvO
Improved DDoS Detection Utilizing Deep Neural Networks and Feedforward Neural Networks as Autoencoder
...Show More Authors

Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybrid technique to recognize denial-of-service (DDoS) attacks that combine deep learning and feedforward neural networks as autoencoders. Two datasets were analyzed for the training and testing model, first statically and then iteratively. The auto-encoding model is constructed by stacking the input layer and hidden layer of self-encoding models’ layer by layer, with each self-encoding model using a hidden layer. To evaluate our model, we use a three-part data split (train, test, and validate) rather than the common two-part split (train and test). The resulting proposed model achieved a higher accuracy for the static dataset, where for ISCX-IDS-2012 dataset, accuracy reached a high of 99.35% in training, 99.3% in validation and 99.99% in precision, recall, and F1-score. for the UNSW2018 dataset, the accuracy reached a high of 99.95% in training, 0.99.94% in validation, and 99.99% in precision, recall, and F1-score. In addition, the model achieved great results with a dynamic dataset (using an emulator), reaching a high of 97.68% in accuracy.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
Feature Extraction of Human Facail Expressions Using Haar Wavelet and Neural network
...Show More Authors

One of the challenging and active research topics in the recent years is Facial Expression. This paper presents the method to extract the features from the facial expressions from still images. Feature extraction is very important for classification and recognition process. This paper involve three stages which contain capture the images, pre-processing and feature extractions. This method is very efficient in feature extraction by applying haar wavelet and Karhunen-Loève Transform (KL-T). The database used in this research is from Cohen-Kanade which used six expressions of anger, sadness fear, happiness, disgust and surprise. Features that have been extracted from the image of facial expressions were used as inputs to the neural networ

... Show More
View Publication Preview PDF
Publication Date
Tue Oct 25 2022
Journal Name
Minar Congress 6
HANDWRITTEN DIGITS CLASSIFICATION BASED ON DISCRETE WAVELET TRANSFORM AND SPIKE NEURAL NETWORK
...Show More Authors

In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database

View Publication Preview PDF
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Economics And Administrative Sciences
Use projection pursuit regression and neural network to overcome curse of dimensionality
...Show More Authors

Abstract

This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
ON-Line MRI Image Selection and Tumor Classification using Artificial Neural Network
...Show More Authors

When soft tissue planning is important, usually, the Magnetic Resonance Imaging (MRI) is a medical imaging technique of selection. In this work, we show a modern method for automated diagnosis depending on a magnetic resonance images classification of the MRI. The presented technique has two main stages; features extraction and classification. We obtained the features corresponding to MRI images implementing Discrete Wavelet Transformation (DWT), inverse and forward, and textural properties, like rotation invariant texture features based on Gabor filtering, and evaluate the meaning of every

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Feb 20 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Text Encryption Algorithm Based on Chaotic Neural Network and Random Key Generator
...Show More Authors

This work presents a symmetric cryptography coupled with Chaotic NN , the encryption algorithm process the data as a blocks and it consists of multilevel( coding of character, generates array of keys (weights),coding of text and chaotic NN ) , also the decryption process consists of multilevel (generates array of keys (weights),chaotic NN, decoding of text and decoding of character).Chaotic neural network is used as a part of the proposed system with modifying on it ,the keys that are used in chaotic sequence are formed by proposed key generation algorithm .The proposed algorithm appears efficiency during the execution time where it can encryption and decryption long messages by short time and small memory (chaotic NN offer capacity of m

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Access
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
...Show More Authors

View Publication
Scopus (20)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Diagnosis and Classification of Type II Diabetes based on Multilayer Neural Network
...Show More Authors

     Diabetes is considered by the World Health Organization (WHO) as a main health problem globally. In recent years, the incidence of Type II diabetes mellitus was increased significantly due to metabolic disorders caused by malfunction in insulin secretion. It might result in various diseases, such as kidney failure, stroke, heart attacks, nerve damage, and damage in eye retina. Therefore, early diagnosis and classification of Type II diabetes is significant to help physician assessments.

The proposed model is based on Multilayer Neural Network using a dataset of Iraqi diabetes patients obtained from the Specialized Center for Endocrine Glands and Diabetes Diseases. The investigation includes 282 samples, o

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Materials Today: Proceedings
Pyrolysis of scrap tire by utilizing zeolite as catalyst
...Show More Authors

View Publication
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
Utilizing Attapulgite as Anti-Spill Liners of Crude Oil
...Show More Authors

The efficiency of attapulgite liners as anti-seepage for crude oil is examined. Consideration is given to the potential use of raw attapulgite and mixture attapulgite with prairie hay and coconut husk as liners to prevent crude oil seepage. Attapulgite clay used in this study was brought from Injana formation /Western Desert of Iraq. Two types of Crude oil brought from Iraqi oil fields were used in experiments; heavy crude oil from East-Baghdad oil field and light crude oil from Nassiriya oil field. Initially the basic properties of attapulgite and crude oils were determined. The attapulgite clay was subjected to mineralogical, chemical and scanning electron microscope analyses. Raw Attapulgite 150µm, 75µm, and 53µm were tested

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Dec 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Finite Element Neural Network And Its Applications To Forward And Inverse Problems
...Show More Authors

In this paper, first we   refom1Ulated   the finite   element  model

(FEM)   into   a   neural   network   structure   using   a   simple   two   - dimensional problem. The structure of this neural network is described

, followed  by its   application   to   solving  the forward    and  inverse problems. This model is then extended to the general case and the advantages and  di sadvantages  of  this  approach  are  descri bed  along with an analysis  of  the sensi tivity   of

... Show More
View Publication Preview PDF