Preferred Language
Articles
/
CRcy-Y0BVTCNdQwCVSvO
Improved DDoS Detection Utilizing Deep Neural Networks and Feedforward Neural Networks as Autoencoder
...Show More Authors

Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybrid technique to recognize denial-of-service (DDoS) attacks that combine deep learning and feedforward neural networks as autoencoders. Two datasets were analyzed for the training and testing model, first statically and then iteratively. The auto-encoding model is constructed by stacking the input layer and hidden layer of self-encoding models’ layer by layer, with each self-encoding model using a hidden layer. To evaluate our model, we use a three-part data split (train, test, and validate) rather than the common two-part split (train and test). The resulting proposed model achieved a higher accuracy for the static dataset, where for ISCX-IDS-2012 dataset, accuracy reached a high of 99.35% in training, 99.3% in validation and 99.99% in precision, recall, and F1-score. for the UNSW2018 dataset, the accuracy reached a high of 99.95% in training, 0.99.94% in validation, and 99.99% in precision, recall, and F1-score. In addition, the model achieved great results with a dynamic dataset (using an emulator), reaching a high of 97.68% in accuracy.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 30 2024
Journal Name
International Journal Of Intelligent Engineering And Systems
Eco-friendly and Secure Data Center to Detection Compromised Devices Utilizing Swarm Approach
...Show More Authors

Modern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the

... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Journal Of Intelligent Systems
Void-hole aware and reliable data forwarding strategy for underwater wireless sensor networks
...Show More Authors
Abstract<p>Reliable data transfer and energy efficiency are the essential considerations for network performance in resource-constrained underwater environments. One of the efficient approaches for data routing in underwater wireless sensor networks (UWSNs) is clustering, in which the data packets are transferred from sensor nodes to the cluster head (CH). Data packets are then forwarded to a sink node in a single or multiple hops manners, which can possibly increase energy depletion of the CH as compared to other nodes. While several mechanisms have been proposed for cluster formation and CH selection to ensure efficient delivery of data packets, less attention has been given to massive data co</p> ... Show More
View Publication Preview PDF
Scopus (8)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Lecture Notes In Computer Science
Constrained Differential Evolution for Cost and Energy Efficiency Optimization in 5G Wireless Networks
...Show More Authors

The majority of real-world problems involve not only finding the optimal solution, but also this solution must satisfy one or more constraints. Differential evolution (DE) algorithm with constraints handling has been proposed to solve one of the most fundamental problems in cellular network design. This proposed method has been applied to solve the radio network planning (RNP) in the forthcoming 5G Long Term Evolution (5G LTE) wireless cellular network, that satisfies both deployment cost and energy savings by reducing the number of deployed micro base stations (BSs) in an area of interest. Practically, this has been implemented using constrained strategy that must guarantee good coverage for the users as well. Three differential evolution

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Jun 20 2024
Journal Name
Ingénierie Des Systèmes D Information
Enabling Technologies for Ultra-Low Latency and High-Reliability Communication in 6G Networks
...Show More Authors

View Publication Preview PDF
Scopus (10)
Crossref (6)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Computer Modeling In Engineering &amp; Sciences
A Review and Bibliometric Analysis of the Current Studies for the 6G Networks
...Show More Authors

View Publication
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Jun 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Reduction of the error in the hardware neural network
...Show More Authors

Specialized hardware implementations of Artificial Neural Networks (ANNs) can offer faster execution than general-purpose microprocessors by taking advantage of reusable modules, parallel processes and specialized computational components. Modern high-density Field Programmable Gate Arrays (FPGAs) offer the required flexibility and fast design-to-implementation time with the possibility of exploiting highly parallel computations like those required by ANNs in hardware. The bounded width of the data in FPGA ANNs will add an additional error to the result of the output. This paper derives the equations of the additional error value that generate from bounded width of the data and proposed a method to reduce the effect of the error to give

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Proceedings Of International Conference On Computing And Communication Networks
Speech Age Estimation Using a Ranking Convolutional Neural Network
...Show More Authors

View Publication
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Fri Aug 27 2021
Journal Name
Human Interaction, Emerging Technologies And Future Systems V: Proceedings Of The 5th International Virtual Conference On Human Interaction And Emerging Technologies, Ihiet 2021, August 27-29, 2021 And The 6th Ihiet: Future Systems (ihiet-fs 2021), October 28-30, 2021, France
Electricity Consumption Forecasting in Iraq with Artificial Neural Network
...Show More Authors

Scopus (11)
Scopus
Publication Date
Wed Dec 01 2021
Journal Name
Computers &amp; Electrical Engineering
Utilizing different types of deep learning models for classification of series arc in photovoltaics systems
...Show More Authors

View Publication
Crossref (12)
Crossref
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Design of New Hybrid Neural Structure for Modeling and Controlling Nonlinear Systems
...Show More Authors

This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number

... Show More
View Publication Preview PDF
Crossref