Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybrid technique to recognize denial-of-service (DDoS) attacks that combine deep learning and feedforward neural networks as autoencoders. Two datasets were analyzed for the training and testing model, first statically and then iteratively. The auto-encoding model is constructed by stacking the input layer and hidden layer of self-encoding models’ layer by layer, with each self-encoding model using a hidden layer. To evaluate our model, we use a three-part data split (train, test, and validate) rather than the common two-part split (train and test). The resulting proposed model achieved a higher accuracy for the static dataset, where for ISCX-IDS-2012 dataset, accuracy reached a high of 99.35% in training, 99.3% in validation and 99.99% in precision, recall, and F1-score. for the UNSW2018 dataset, the accuracy reached a high of 99.95% in training, 0.99.94% in validation, and 99.99% in precision, recall, and F1-score. In addition, the model achieved great results with a dynamic dataset (using an emulator), reaching a high of 97.68% in accuracy.
Sensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any inte
... Show MoreIn today's world, the science of bioinformatics is developing rapidly, especially with regard to the analysis and study of biological networks. Scientists have used various nature-inspired algorithms to find protein complexes in protein-protein interaction (PPI) networks. These networks help scientists guess the molecular function of unknown proteins and show how cells work regularly. It is very common in PPI networks for a protein to participate in multiple functions and belong to many complexes, and as a result, complexes may overlap in the PPI networks. However, developing an efficient and reliable method to address the problem of detecting overlapping protein complexes remains a challenge since it is considered a complex and har
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreThis research includes the use of an artificial intelligence algorithm, which is one of the algorithms of biological systems which is the algorithm of genetic regulatory networks (GRNs), which is a dynamic system for a group of variables representing space within time. To construct this biological system, we use (ODEs) and to analyze the stationarity of the model we use Euler's method. And through the factors that affect the process of gene expression in terms of inhibition and activation of the transcription process on DNA, we will use TF transcription factors. The current research aims to use the latest methods of the artificial intelligence algorithm. To apply Gene Regulation Networks (GRNs), we used a progr
... Show MoreThis study aims to analyze the flow migration of individuals between Iraqi governorates using real anonymized data from Korek Telecom company in Iraq. The purpose of this analysis is to understand the connection structure and the attractiveness of these governorates through examining the flow migration and population densities. Hence, they are classified based on the human migration at a particular period. The mobile phone data of type Call Detailed Records (CDRs) have been observed, which fall in a 6-month period during COVID-19 in the year 2020-2021. So, according to the CDRs nature, the well-known spatiotemporal algorithms: the radiation model and the gravity model were applied to analyze these data, and they are turned out to be comp
... Show More