The research includes the preparation of several complexes of the internal transition elements lanthanide (Ln = La, Nd, Er, Gd, and Dy) containing the 4f shell, with Schiff bases resulting from condensation reactions between 4-antipyrinecarboxaldehyde and 2-aminobenzothiazoles. Schiff's base was identified using FTIR spectra, UV-vis spectroscopy, elemental microanalysis CHNSO, nuclear magnetic resonance, mass spectrometry, and TGA thermal analysis. The complexes were studied and identified with elemental microanalysis CHNSO, FTIR spectroscopy, UV-vis spectroscopy, TGA thermal analysis, conductivity measurement, and magnetic sensitivity. The result showed that these complexes were classified as homogeneous bidentate complexes with the general formula of [Ln2(L)2(NO3)6]·6H2O. The physical measurements indicated that the prepared complexes are non-electrolyte and paramagnetic. Some compounds prepared in vitro were evaluated for their antibacterial activity against four types of pathogenic strains Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Klebsiella pneumonia, and using the agar disc spreading method for the evaluation. The results showed that some of these complexes have good antibacterial activity compared to the biological activity of the ligand. Also, the biological activity of Schiff's base and the prepared complexes were evaluated against three types of fungi (Candida albicans, Tropical fungi, and Scandal fungi), and they showed great activity against the prepared complexes.
four coordinated complexes for divalent metal ions : Mn, Fe, Co, Ni, Cu and Cd have been synthesized using bidentate Schiff base ligand type (NN)formed by the condensation of o-phenylenediamine , p- methylbenzadehyde and furfural in methanol. The ligand was reacted with divalent metal chloride forming complexes of the types :[M(L)Cl2] where : MII=Mn, Fe, Ni, Cu, and Cd . These new compounds were characterized by elemental analysis, spectroscopic methods (FT-IR, U.V-Vis, 1HNMR (for ligand only and atomic absorption) , magnetic susceptibility, chloride content along with conductivity measurement. These studies revealed that the geometry for all complexes about central metal ion is tetrahedral.
New substituted coumarins derivatives were synthesized by using nitration reaction to produce different nitro coumarin isomers which were separated from these isomers by using different solvent, and the reduction of nitro compounds was done to give corresponding amino coumarins. Temperature and reaction time of reaction were very important factors in determining the most productive nitro isotopes. A low temperature for three hours was sufficient to give a high product of a compound 6-nitro coumarin while increasing the temperature for a period of twenty-four hours that gave a high product of 8-nitro-coumarin. The synthesized compounds were confirmed by FT-IR,1 H-NMR, and13 C-NMR spectroscopy and all final compounds were tested for their ant
... Show MoreThe reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal
... Show MoreThe new bidentate ligand 2-amino-5-phenyl-1,3,4-oxadiazole (Apods) was prepared by the reaction of benzaldehyde semicarbazone with bromine and sodium acetate in acetic acid gave. The prepared ligand was identified by Microelemental Analysis, FT.IR, UV-Vis and 1HNMR spectroscopic techniqes. Treatment of the prepared ligand with the following selected metal ions (MnII, CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio, yielded a series of complexes of the general formula [M(L)2Cl2].The prepared complexes were characterized using flame atomic absorption, (C.H.N)Analysis, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by Mohr metho
... Show MoreIn this study, the antimicrobial properties of newly synthesized Schiff bases (4a-4e) and thiazolidinone compounds (5a-5e) generated from 3,5-dinitrobenzoic acid were assessed. These compounds were obtained by reacting 3,5-dinitrobenzoic acid (1) with ethanol in a few drops of concentrated H2SO4 to produce the ester (2). The acid hydrazide (3), which was produced by treating the ester with hydrazine hydrate, reacted with the proper aldehydes, including 4-bromobenzaldehyde, 4-chlorobenzaldehyde, 4-hydroxybenzaldehyde, 4-methoxybenzaldehyde, and 4-hydroxy-3-methoxybenzaldehyde, respectively, to form Schiff bases (4a-4e). The thiazolidinone compounds (5a-5e) were produced by the cyclocondensation reaction of compounds (4a-4e) with thio
... Show MoreIn this study, the antimicrobial properties of newly synthesized Schiff bases (4a-4e) and thiazolidinone compounds (5a-5e) generated from 3,5-dinitrobenzoic acid were assessed. These compounds were obtained by reacting 3,5-dinitrobenzoic acid (1) with ethanol in a few drops of concentrated H2SO4 to produce the ester (2). The acid hydrazide (3), which was produced by treating the ester with hydrazine hydrate, reacted with the proper aldehydes, including 4-bromobenzaldehyde, 4-chlorobenzaldehyde, 4-hydroxybenzaldehyde, 4-methoxybenzaldehyde, and 4-hydroxy-3-methoxybenzaldehyde, respectively, to form Schiff bases (4a-4e). The thiazolidinone compounds (5a-5e) were produced by the cyclocondensation reaction of compounds (4a-4e) with thio
... Show MoreSeveral new derivatives of 1, 2, 4-triazoles linked to phthalimide moiety were synthesized through following multisteps. The first step involved preparation of 2, 2-diphthalimidyl ethanoic acid [2] via reaction of two moles of phthalimide with dichloroacetic acid. Treatment of the resulted imide with ethanol in the second step afforded 2, 2-diphthalimidyl ester [3] which inturn was introduced in reaction with hydrazine hydrate in the third step, producing the corresponding hydrazide derivative [4]. The synthesized hydazide was introduced in different synthetic paths including treatment with carbon disulfide in alkaline solution then with hydrazine hydrate to afford the new 1, 2, 4-triazole [10]. Reaction of compound [10] with different alde
... Show MoreIn the present study, a novel ligand (L) made of 2-hydroxynaphthaldehyde and 3-hydrazone-1,3-dihydro-indole-2-one(3-[(3-hydroxynaphthalen-2-yl-ethylidene)-hydrazono]-1,3-dihydro-indol-2-one). The ligand was characterized by FTIR, UV-vis, mass, 1H-NMR, 13C-NMR, and CHN elemental analysis. New complexes of this ligand were created by treating methanol and a drop of DMF solution of the produced ligand with the hydrated metal salts of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) in a molar ratio of 2:1 (L:M). As a result, complexes have been emerged and identified FTIR, UV-vis, C.H.N., chloride-containing, molar conductance, magnetic susceptibility, and atomic absorption. The characterization result for each complex indicated complexes wi
... Show MoreMixed metal ligand complexes is reported with Curcumin (CUM) as a primary ligand and 1:10-phenanthroline (phen ) as secondary ligand. The structures of these complexes are confirmed by using FT-IR and UV- electronic spectroscopies, magnetic moments, melting points , molar conductivity measurements .and the metal % analysis revealed that the complexes analyze indicates a six coordinated as[M(CUM)( Phen)2]Cl, M=Mn (II), Co(II), Ni(II),Cu(II) ,Zn(II) , Cd(II) , Hg(II) and [M’ (CUM)( Phen)2]Cl2 M’= Cr(III) &. Fe(III). In-vitro antimicrobial studies on ( Curcumin and 1:10-phenanthroline ligands and mixed metal ligand complexes against {(Bacillus subtilis (G+) , Esherichia Coli (G-) and as well as antifungal activities against Candida albican
... Show More