The variety of clean energy sources has risen, involving many resources, although their fundamental principles remain consistent in terms of energy generation and pollution reduction. The using of hydropower system for energy production also has a dynamic impact in which it utilizes to harness the water for the purpose of energy production. As it is important to overcome the problem of accidents in the highway and rural areas in the case of server rainfall and flood by implementation a smart system that used for energy production. This paper aims to develop a controlled hydropower system installed in the drainage sinks allocated in highway roads used for producing. The proposed system consists of storage unit represented by pipes used for the purpose of water collecting, it's coupled with Francis's turbine and DC generator. A controlled unit is utilized to control the discharging process of collected water in which float and rotation sensors are connected to identify the water level and generator movement to allot the solenoid valve for the purpose of water collecting and discharging based on assigned point. According to the elementary findings, a power output of 20 watts is observed for every 10-second interval. In the event of a significant flood occurrence, the system will continue to operate, resulting in an output energy accumulation of 4 KWATT per hour. The quantity of energy available is adequate to supply electricity for a duration of one hour to direct current light-emitting diode (DC-LED) devices, or it can alternatively be stored in batteries.
In today's digital era, the importance of securing information has reached critical levels. Steganography is one of the methods used for this purpose by hiding sensitive data within other files. This study introduces an approach utilizing a chaotic dynamic system as a random key generator, governing both the selection of hiding locations within an image and the amount of data concealed in each location. The security of the steganography approach is considerably improved by using this random procedure. A 3D dynamic system with nine parameters influencing its behavior was carefully chosen. For each parameter, suitable interval values were determined to guarantee the system's chaotic behavior. Analysis of chaotic performance is given using the
... Show MoreThis study aimed to incorporate hydroxyapatite nanoparticles (nHA) or amorphous calcium phosphate nanoparticles (nACP) into a self-etch primer (SEP) to develop a simplified orthodontic bonding system with remineralizing and enamel preserving properties.
nHA and nACP were incorporated into a commercial SEP (Transbond™ plus) in 7% weight ratio and compared with the plain SEP as a control. Shear bond strengths (SBS), enamel damage, and adhesive remnant index (ARI) scores were evaluated at 24 h
sensor sampling rate (SSR) may be an effective and crucial field in networked control systems. Changing sensor sampling period after designing the networked control system is a critical matter for the stability of the system. In this article, a wireless networked control system with multi-rate sensor sampling is proposed to control the temperature of a multi-zone greenhouse. Here, a behavior based Mamdany fuzzy system is used in three approaches, first is to design the fuzzy temperature controller, second is to design a fuzzy gain selector and third is to design a fuzzy error handler. The main approach of the control system design is to control the input gain of the fuzzy temperature controller depending on the cur
... Show MoreIn this study, the electro-hydraulic servo system for speed control of fixed displacement hydraulic motor using proportional valve and (PID) controller is investigated theoretically ,experimentally and simulation . The theoretical part includes the derivation of the nonlinear mathematical model equation of (valve – motor ) combination system and the derivation of the transfer function for the complete hydraulic system , the stability test of the system during the operation through the transfer function using MATLAB package
V7.1 have been done. An experimental part includes design and built hydraulic test rig and simple PID controller .The best PID gains have been calculated experimentally and simulation, speed control performance te
A perturbed linear system with property of strong observability ensures that there is a sliding mode observer to estimate the unknown form inputs together with states estimation. In the case of the electro-hydraulic system with piston position measured output, the above property is not met. In this paper, the output and its derivatives estimation were used to build a dynamic structure that satisfy the condition of strongly observable. A high order sliding mode observer (HOSMO) was used to estimate both the resulting unknown perturbation term and the output derivatives. Thereafter with one signal from the whole system (piton position), the piston position make tracking to desire one with a simple linear output feedback controller after ca
... Show MoreMaintaining and breeding fish in a pond are a crucial task for a large fish breeder. The main issues for fish breeders are pond management such as the production of food for fishes and to maintain the pond water quality. The dynamic or technological system for breeders has been invented and becomes important to get maximum profit return for aquaponic breeders in maintaining fishes. This research presents a developed prototype of a dynamic fish feeder based on fish existence. The dynamic fish feeder is programmed to feed where sensors detected the fish's existence. A microcontroller board NodeMCU ESP8266 is programmed for the developed h
... Show MoreIn this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained fo
... Show MoreIn recent years, the demand for air travel has increased and many people have traveled by plane. Most passengers, however, feel stressed due to the limited cabin space. In order to make these passengers more comfortable, a personal air-conditioning system for the entire chair is needed. This is because the human body experiences discomfort from localized heating or cooling, and thus, it is necessary to provide appropriate airflow to each part of the body. In this paper, a personal air-conditioning system, which consists of six vertically installed air-conditioning vents, will be proposed. To clarify the setting temperature of each vent, the airflow around the passenger and the operative temperature of each part of the body is investigate
... Show More