The present study aimed to examine the effect of endosulfan insecticide on some molecular and biochemical parameters in white mice. Thirty mice were separated randomly into three groups for treatment with endosulfan. One group (G1) served as the control, while the other two groups received intraperitoneal injections of endosulfan G2 (3 mg/kg) and G3 (17 mg/kg) twice a week for 21 and 45 days, respectively. A biochemical study by measuring liver function parameters, including (alanine aminotransferase (ALT) and aspartate aminotransferase (AST)) and kidney function parameters, including (Blood Urea and Creatinine) and malondialdehyde (MDA), catalase activity (CAT). This study also tested DNA damage by comet assay (normal%, low%, medium%, high%). The results of renal function parameters (Blood Urea and Creatinine) were significantly increased in all treated groups after 21 and 45 days exposed to endosulfan compared with control groups. The highest value of blood urea recorded was (49.33 ±0.88 mg/dl) at 17 mg/kg for 45 days compared with the control group, and the highest value of Creatinine recorded was (1.81 ±0.13 mg/dl) at 17 mg/kg for 45 days compared with the control group. Liver function parameters (ALT and AST) significantly increased in all treated groups compared with control groups. The results of MDA, CAT enzyme, were significantly increased in all treated groups after 21 and 45 days compared with control groups. The highest value of MDA recorded was (3.93 ±0.07 μM) at 17 mg/kg for 45 days compared with the control group. Tail DNA (%) showed a significant increase at high concentrations, and the results showed a considerable increase in the severe damage of DNA in the treated group 17 mg\kg b.wt. (25.00 ±1.00)% for 45 days, compared with the control group (3.00 ±1.00) %.
Phenol is one of the worst-damaging organic pollutants, and it produces a variety of very poisonous organic intermediates, thus it is important to find efficient ways to eliminate it. One of the promising techniques is sonoelectrochemical processing. However, the type of electrodes, removal efficiency, and process cost are the biggest challenges. The main goal of the present study is to investigate the removal of phenol by a sonoelectrochemical process with different anodes, such as graphite, stainless steel, and titanium. The best anode performance was optimized by using the Taguchi approach with an L16 orthogonal array. the degradation of phenol sonoelectrochemically was investigated with three process parameters: current de
... Show MoreThe objective of this paper is to improve the general quality of infrared images by proposes an algorithm relying upon strategy for infrared images (IR) enhancement. This algorithm was based on two methods: adaptive histogram equalization (AHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE). The contribution of this paper is on how well contrast enhancement improvement procedures proposed for infrared images, and to propose a strategy that may be most appropriate for consolidation into commercial infrared imaging applications.
The database for this paper consists of night vision infrared images were taken by Zenmuse camera (FLIR Systems, Inc) attached on MATRIC100 drone in Karbala city. The experimental tests showed sign
Globally, buildings use about 40% of energy. Many elements, such as the physical properties of the structure, the efficiency of the cooling and heating systems, the activity of the occupants, and the building’s sustainability, affect the energy consumption of a building. It is really difficult to predict how much energy a building will need. To improve the building’s sustainability and create sustainable energy sources to reduce carbon dioxide emissions from fossil fuel combustion, estimating the building's energy use is necessary. This paper explains the energy consumed in the lecture building of the Al-Khwarizmi College of Engineering, University of Baghdad (UOB), Baghdad, Iraq. The weather data and the building construction informati
... Show MoreThe current study focuses on utilizing artificial intelligence (AI) techniques to identify the optimal locations of production wells and types for achieving the production company’s primary objective, which is to increase oil production from the Sa’di carbonate reservoir of the Halfaya oil field in southeast Iraq, with the determination of the optimal scenario of various designs for production wells, which include vertical, horizontal, multi-horizontal, and fishbone lateral wells, for all reservoir production layers. Artificial neural network tool was used to identify the optimal locations for obtaining the highest production from the reservoir layers and the optimal well type. Fo
Microfluidic devices provide distinct benefits for developing effective drug assays and screening. The microfluidic platforms may provide a faster and less expensive alternative. Fluids are contained in devices with considerable micrometer-scale dimensions. Owing to this tight restriction, drug assay quantities are minute (milliliters to femtoliters). In this research, a microfluidic chip consisting of micro-channels carved on substrate materials built using an Acrylic (Polymethyl Methacrylate, PMMA) chip was designed using a Carbon Dioxide (CO2) laser machine. The CO2 parameters influence the chip’s width, depth, and roughness. To have a regular channel surface, and low roughness, the laser power (60 W), with scanning speed (250 m/s)
... Show MoreA significant increase in the incidence of non-O157 verotoxigenic Escherichia coli (VTEC) infections have become a serious health issues, and this situation is worsening due to the dissemination of plasmid mediated multidrug-resistant microorganisms worldwide. This study aims to investigate the presence of plasmid-mediated verotoxin gene in non-O157 E. coli. Standard microbiological techniques identified a total of 137 E. coli isolates. The plasmid was detected by Perfectprep Plasmid Mini preparation kit. These isolates were subjected to disk diffusion assay, and plasmid curing with ethidium bromide treatment. The plasmid containing isolates were subjected to a polymerase chain reaction (PCR) for investigating
... Show MoreBackground. Implant insertion in regions with poor bone quantity, such as the posterior maxilla, is potentially associated with an increased rate of implant failure. Calcium sulfate can be used as the coating material for commercially pure titanium (CpTi) and as the bone graft material around implants when bound to eggshell powder to enhance the bone quality and quantity of bone defect regions. This study performed a torque removal test to evaluate the effectiveness of eggshell powder as a bone substitute for filling bone defects around CpTi-coated implants coated with nanocrystalline calcium sulfate. Materials and Methods. Eighty screw implant designs were used in the tibiae of 20 white New Zealand rabbits. A total of uncoated 20 s
... Show More