Frequently, load associated mode of failure, rutting and fatigue, are the main failure types found in some newly constructed roads within Baghdad, the capital of Iraq, and some suburban areas. The use of excessive amount of natural sand in asphalt concrete mixes which is attractive to local contractors could be one of the possible causes to the lack of strength properties of the mixes resulting in frustration in the pavement performance. In this study, the performance properties of asphalt concrete mixes with two natural sand types, desert and river sands, were evaluated. Moreover, five replacement rates of 0, 25, 50, 75, and 100% by weight of the fine aggregate finer than 4.75 were used. The performance properties including moisture susceptibility, resilient modulus, permanent deformation, and fatigue characteristics were evaluated using indirect tensile strength, uniaxial repeated loading and repeated flexural beam tests. Also, as a part of the research objective, the laboratory tests result were used to predict the performance using VESYS computer software. Results showed that mixes with high natural sand content (NSC) are more susceptible to moisture damage and rutting, lower resilient modulus and some improvement in fatigue resistance. Based on the obtained results, the necessity has rise to revise the current local specification for asphalt concrete which specifies the limits of natural sand content in the mixes of wearing and binder courses with 25% whereas for base course mixes no limit exist yet.
Many risks have adverse consequences for construction projects’ objectives such as quality, schedule, and cost. As engineering procurement construction (EPC) contracts gradually become one of the most common types used in implementing major large-scale construction projects, identifying common risk types and analyzing their root causes is important for developing measures to decrease and eliminate future risks in these types of contracts. The information about the main causes of risks was collected
A new two series of liquid crystalline Schiff bases containing thiazole moiety with different length of alkoxy spacer were synthesized, and the relation between the spacer length and the liquid crystalline behavior was investigated. The molecular structures of these compounds were performed by elemental analysis and FTIR, 1HNMR spectroscopy. The liquid crystalline properties were examined by hot stage optical polarizing microscopy (OPM) and differential scanning calorimetry (DSC). All compouns of the two series display liquid crystalline nematic mesophase. The liquid crystalline behaviour has been analyzed in terms of structural property relationship
The electrochemical behavior of Al-17%Si alloy is investigated in 3.5wt% NaCl solution. Many alloys with addition of the different wt% magnesium metal of 1wt%, 2%, 3wt% ,4.5wt% ,and 9wt% were prepared by gravity die casting . The microstructures of prepared alloys were examined by optical and SEM microscopes. Corrosion behavior was investigated by using potentiostat instrument under static potentials test and corrosion current was recorded to determine corrosion resistance of all prepared samples. It was found that the addition of Mg metal improves the corrosion resistance of Al-17%Si alloy in 3.5%NaCl solution. The alloy containing 1%Mg shows less corrosion rate than the others while the alloys containing 4.5%Mg, 9%Mg content have
... Show MoreIn this work, the optical properties of Cu2S with different thickness
(1400, 2400, 4400) Ǻ have been prepared by chemical spray pyrolys
is method onto clean glass substrate heated at 283 oC ±2. The effect
of thickness on the optical properties of Cu2S has been studied. It
was found that the optical properties of the electronic transitions on
fundamental absorption edge were direct allowed and the value of the
optical energy gap of Cu2S (Eg) for direct transition decreased from
(2.4-2.1) eV with increasing of the thickness from (1400 - 4400)Ǻ
respectively. Also it was found that the absorption coefficient is
increased with increasing of thicknesses. The optical constants such<
In this research, that been focused on the most important economic benefits expected when applying the three standards of sustainability in construction projects (economic, environmental and social). Fuzzy AHP, a multi-decision decision-making technique for evaluating construction projects. Which when used we get the speed and accuracy in the results. Using this technique will reduce uncertainties decisions significantly (fuzzy environment), that found in most projects .The results of the data analysis showed that the economic standards take the greatest relative importance (60%) among the three sustainability standards. Therefore, the implementation of any standards need a cost so the economic benefit of any proje
... Show MoreThe bioequivalence of a single dose tablet containing 5 mg amlodipine as a test product in comparison to Norvasc® 5 mg tablet (Pfizer USA) as the reference product was studied. Both products were administered to twenty eight healthy male adult subjects applying a fasting, single-dose, two-treatment, two-period, two-sequence, randomized crossover design with two weeks washout period between dosing. Twenty blood samples were withdrawn from each subject over 144 hours period. Amlodipine concentrations were determined in plasma by a validated HPLC-MS/MS method. From the plasma concentration-time data of each individual, the pharmacokinetic parameters; Cmax, Tmax, AUC0-t, AUC0-
Laser drilling is capable of producing small, precisely positioned holes with high degree of reproductively. In this paper , IR millisecond Nd:YAG single pulsed laser was used to determine the effect of laser parameters on the drilled hole of the glass - fiber reinforced epoxy composite FR-4 sample of 2 mm in thickness . The type of laser source was GSI lumonics JK760TR Series laser 1.064μm system in a CNC cabin. The JK760TR series has a 0.3-50ms pulse length and a maximum repetition rate 500Hz with an average power of 600W. The investigation of single pulse laser drilling in this paper was based on theoretical and experimental solutions. In single pulse technique, the investigation included focal plane position fpp, pulse shap
... Show MorePorous Silicon (PSi) has been produced in this work by using Photochemical (PC) etching process by using a hydrofluoric acid (HF) solution. The irradiation has been achieved using quartz- tungsten halogen lamp. The influence of various irradiation times on the properties of PSi اmaterial such as layer thickness, etching rate and porosity was investigated in this work too.
The XRD has been studied to determine the crystal structure and the crystalline size of PSi material