This work evaluates the influence of combining twisted fins in a triple-tube heat exchanger utilised for latent heat thermal energy storage (LHTES) in three-dimensional numerical simulation and comparing the outcome with the cases of the straight fins and no fins. The phase change material (PCM) is in the annulus between the inner and the outer tube, these tubes include a cold fluid that flows in the counter current path, to solidify the PCM and release the heat storage energy. The performance of the unit was assessed based on the liquid fraction and temperature profiles as well as solidification and the energy storage rate. This study aims to find suitable and efficient fins number and the optimum values of the Re and the inlet temperature of the heat transfer fluid. The outcomes stated the benefits of using twisted fins related to those cases of straight fins and the no-fins. The impact of multi-twisted fins was also considered to detect their influences on the solidification process. The outcomes reveal that the operation of four twisted fins decreased the solidification time by 12.7% and 22.9% compared with four straight fins and the no-fins cases, respectively. Four twisted fins improved the discharging rate by 12.4% and 22.8% compared with the cases of four straight fins and no-fins, respectively. Besides, by reducing the fins’ number from six to four and two, the solidification time reduces by 11.9% and 25.6%, respectively. The current work shows the impacts of innovative designs of fins in the LHTES to produce novel inventions for commercialisation, besides saving the power grid.
A study has been done to find the optimum separators pressures of separation stations. Stage separation of oil and gas is accomplished with a series of separators operating at sequentially reduced pressures. Liquid discharged from a higher pressure separator into the lower pressure separator. The set of working separators pressures which yield maximum recovery of liquid hydrocarbon from the well fluid is the optimum set of pressures which is the target of this work.
Computer model is used to find the optimum separators pressures. The model employs the Peng-Robinson equation of state for volatile oil. Application of this model shows good improvement of al
Fluid-structure interaction method is performed to predict the dynamic characteristics of axial fan system. A fluid-structure interface physical environment method (monolithic method) is used to couple the fluid flow solver with the structural solver. The integration of the three-dimensional Navier-Stokes equations is performed in the time Doman, simultaneously to the integration of the three dimensional structural model. The aerodynamic loads are transfer from the flow to structure and the coupling step is repeated within each time step, until the flow solution and the structural solution have converged to yield a coupled solution of the aeroelastic set of equations. Finite element method is applied to solve numerically
... Show MoreSCADA is the technology that allows the operator to gather data from one or more various facilities and to send control instructions to those facilities. This paper represents an adaptable and low cost SCADA system for a particular sugar manufacturing process, by using Programmable Logic Controls (Siemens s7-1200, 1214Dc/ Dc/ Rly). The system will control and monitor the laboratory production line chose from sugar industry. The project comprises of two sections the first one is the hardware section that has been designed, and built using components suitable for making it for laboratory purposes, and the second section was the software as the PLC programming, designing the HMI, creating alarms and trending system. The system will ha
... Show MoreIn this paper the effect of mixing TiO2 nanoparticles with epoxy resin is studied. The TiO2 nanoparticles would be synthesis and characterized by scanning electron microscopy (SEM), XRD FTIR, for two particle sizes of 50 and 25 nm. The thermal conductivity is measured with and without composite epoxy resin; the results showed that the thermal conductivity was increased as nanoparticle concentration increased too. The thermal conductivity was increased as particle size decreased.
Abstract
One of the major components in an automobile engine is the throttle valve part. It is used to keep up with emissions and fuel efficiency low. Design a control system to the throttle valve is newly common requirement trend in automotive technology. The non-smoothness nonlinearity in throttle valve model are due to the friction model and the nonlinear spring, the uncertainty in system parameters and non-satisfying the matching condition are the main obstacles when designing a throttle plate controller.
In this work, the theory of the Integral Sliding Mode Control (ISMC) is utilized to design a robust controller for the Electronic Throttle Valve (ETV) system. From the first in
... Show MoreIt has become necessary to change from a traditional system to an automated system in production processes, because it has high advantages. The most important of them is improving and increasing production. But there is still a need to improve and develop the work of these systems.
The objective of this work is to study time reduction by combining multiple sequences of operations into one process. To carry out this work, the pneumatic system is designed to decrease\ increase the time of the sequence that performs a pick and place process through optimizing the sequences based on the obstacle dimensions. Three axes are represented using pneumatic cylinders that move according to the sequence used. The system is implemented and con
... Show MoreBackground: The treatment of schizophrenia typically involves the use of olanzapine (OLZ), a typical antipsychotic drug that has poor oral bioavailability due to its low solubility and first-pass effect. Objective: To prepare and optimize OLZ as nanoparticles for transdermal delivery to avoid problems with oral administration. Methods: The nanoprecipitation technique was applied for the preparation of eight OLZ nanoparticles by using different polymers with various ratios. Nanoparticles were evaluated using different methods, including particle size, polydispersity index (PDI), entrapment efficiency (EE%), zeta potential and an in vitro release study. The morphology was evaluated by a field emission scanning electron microscope (F
... Show MoreThis Paper assesses the knowledge management system (KMS) requirements at Al-Ameed University concerning ISO 30401:2022. Specifically, the research aims to ascertain the degree to which international standards have been complied with and gaps that have been identified. A case study was conducted using field observations, interviews, and checklists to assess the institution's compliance with the KMS framework. The level of implementation and documentation of knowledge management processes was assessed using a seven-point scale. The findings reveal that Al-Ameed University has severe gaps in knowledge creation, sharing, and support for knowledge management in terms of strategic leadership. While certain elements like availability of r
... Show More