Adsorption studies were performed at different initial Tetracycline (TC) and Amoxicillin (AMO) concentration, different biomass dosage and type, contact time, agitation speed, and initial pH. In the batch mode were investigated. The optimum pH of solutions is 6.5 for TC and 5 for AMO, agitation speed 200 rpm and concentration 50 ppm. The results in FTIR showed that there were -OH and amides (N-H) and other functional groups on the surface of Cladophora and Spirulina algae. The equilibrium isotherm data were modeled with Freundlich, Temkin, and Langmuir isotherm models. The data best fitted with the Langmuir model. The maximal adsorption capacity from the Langmuir model was (9.86, 20. 5 mg/g) for TC and (7.89, 17.4 mg/g) for AMO on Cladophora and Spirulina algae, respectively. Finally, the pseudo-second-order kinetic model was best fitted the experimental kinetic data of TC and AMO onto Cladophora and Spirulina algae biomass with a high coefficient of determination between 0.97 and 0.99. Cladophora and Spirulina algae, low-cost and eco-friendly adsorbents, can be used to adsorb the TC and AMO from the solution.
The fluctuation and expansion ratios have been studied for cylindrical gas-solid fluidized columns by using air as fluidizing medium and Paracetamol as the bed material. The variables were the column diameter (0.0762, 0.15, and 0.18 m), static bed height (0.05, 0.07, and 0.09 m), and air velocity to several times of minimum fluidization velocity. The results showed that both the fluctuation and expansion ratios had a direct relation with air velocity and an inverse one with column diameter and static bed height. A good agreement was between the experimental results and the calculated values by using the correlation equations from the literature.
CuO nanoparticles were synthesized in two different ways, firstly by precipitation method using copper acetate monohydrate Cu(CO2CH13)2·H2O, glacial acetic acid (CH3COOH) and sodium hydroxide(NaOH), and secondly by sol-gel method using copper chloride(CuCl2), sodium hydroxide (NaOH) and ethanol (C2H6O). Results of scanning electron microscopy (SEM) showed that different CuO nanostructures (spherical and Reef) can be formed using precipitation and sol- gel process, respectively, at which the particle size was found to be less than 2 µm. X-ray diffraction (XRD)manifested that the pure synthesized powder has no inclusions that may exist during preparations. XRD result
... Show MoreCalendula officinalis L. (Asteraceae) known as marigold is known to have several pharmacological activities and used for the treatment of several diseases as measles, jaundice, constipation and several inflammations. Marigold flowers contain several chemical constituents mainly flavonoids, triterpenoids and essential oil. In this study marigold flowers cultivated in Iraq had been investigated for its flavonoids content. The study revealed the presence of quercetin and kaempferol glycosides and the absence of myricetin glycosides. The flowers were extracted with ethanol 70% fractionated with different solvent and the flavonoids were isolated by preparative HPLC. The isolated flavonoids were identified by measuring melting points, UV, IR,
... Show MoreMultimedia applications impose different QoS requirements (e.g., bounded end-to-end delay and jitter) and need an enhanced transport layer protocol that should handle packet loss, minimize errors, manage network congestion, and transmit efficiently. Across an IP network, the transport layer protocol provides data transmission and affects the QoS provided to the application on hand. The most common transport layer protocols used by Internet applications are TCP and UDP. There are also advanced transport layer protocols such as DCCP and TFRC. The authors evaluated the performance of UDP, DCCP, SCTP, and TFRC over wired networks for three traffic flows: data transmission, video streaming, and voice over IP. The evaluation criteria were thro
... Show MoreBreak in the bond and its impact on the difference of scholars
This paper reports a.c., d.c. conductivity and dielectric behavior of Ep-hybrid composite with12 Vol.% Kevlar-Carbon hybrid . D.C. conductivity measurements are conducted on the graded composites by using an electrometer over the temperature range from (293-413) K. It was shown then that conductivity increases by increasing number of Kevlar –Carbon fiber layers (Ep1, Ep2, Ep3), due to the high electrical conductivity of Carbon fiber. To identify the mechanism governing the conduction, the activation energies at low temperature region (LTR) and at high temperature region (HTR) have been calculated. The activation energy values for hybrid composite decrease with increasing number of fiber layers. The a.c. conductivity was measured over fr
... Show MoreUndoubtedly, Road Traffic Accidents (RTAs) are a major dilemma in term of mortality and morbidity facing the road users as well as the traffic and road authorities. Since 2002, the population in Iraq has increased by 49 percent and the number of vehicles by three folds. Consequently, these increases were unfortunately combined with rising the RTAs number, mortality and morbidity. Alongside the humanitarian tragedies, every year, there are considerable economic losses in Iraq lost due to the epidemic of RTAs. Given the necessity of understanding the contributory factors related to RTAs for the implementation by traffic and road authorities to improve the road safety, the necessity have been a rise for this research which focuses into
... Show MoreThree phenol-formaldehyde resins having pendant maleimides were prepared by poly condensation of N-(hydroxyphenyl) maleimides with formaldehyde under conditions similar to those in Novolac preparation. The prepared resins were modified by two methods, the first one includes esterification of phenolic hydroxyl groups in the prepared resins via their treatment with benzoyl, acryloyl, methacryloyl and cinnamoyl chlorides respectively in the presence of triethylamine, while the second modification includes free radical polymerization of vinylic bonds in the prepared resins to produce cross-linked thermally stable polymers.