Adsorption studies were performed at different initial Tetracycline (TC) and Amoxicillin (AMO) concentration, different biomass dosage and type, contact time, agitation speed, and initial pH. In the batch mode were investigated. The optimum pH of solutions is 6.5 for TC and 5 for AMO, agitation speed 200 rpm and concentration 50 ppm. The results in FTIR showed that there were -OH and amides (N-H) and other functional groups on the surface of Cladophora and Spirulina algae. The equilibrium isotherm data were modeled with Freundlich, Temkin, and Langmuir isotherm models. The data best fitted with the Langmuir model. The maximal adsorption capacity from the Langmuir model was (9.86, 20. 5 mg/g) for TC and (7.89, 17.4 mg/g) for AMO on Cladophora and Spirulina algae, respectively. Finally, the pseudo-second-order kinetic model was best fitted the experimental kinetic data of TC and AMO onto Cladophora and Spirulina algae biomass with a high coefficient of determination between 0.97 and 0.99. Cladophora and Spirulina algae, low-cost and eco-friendly adsorbents, can be used to adsorb the TC and AMO from the solution.
The provision of safe water for people is a human right; historically, a major number of people depend on groundwater as a source of water for their needs, such as agricultural, industrial or human activities. Water resources have recently been affected by organic and/or inorganic contaminants as a result of population growth and increased anthropogenic activity, soil leaching and pollution. Water resource remediation has become a serious environmental concern, since it has a direct impact on many aspects of people’s lives. For decades, the pump-and-treat method has been considered the predominant treatment process for the remediation of contaminated groundwater with organic and inorganic contaminants. On the other side, this tech
... Show MoreIn the present study, we have reported investigations on the effect of simultaneous substitution of Tl at the Hg site in the oxygen deficient HgOδ layer of Hg1-xTlxBa2Ca2Cu3O8+ δ cuprate superconductor. Bulk polycrystalline samples were prepared by the two-step solid state reaction process. It was observed that the grown Hg1-xTlxBa2Ca2Cu3O8+ δ corresponds to the 1223 phase. Electrical resistivity, using four probe technique, is used to find the transition temperature Tc. The highest Tc(0ffset) were 108, 102,113, 118, 125 and 121K for Hg1xTlxBa2Ca2Cu3O8+ δ with x = 0.0, 0.05, 0.10, 0.15, 0.20 and 0.25 respectively. The optimum Tc(off) of ~ 125 K and Tc(onset) ~ 136K was fo
... Show MoreKinetic experiments were performed to induce of the green methyl dye adsorption from aqueous solution on the bauxite clay. This study includes determination of the adsorption capacity of bauxite clay to methyl green dye adsorption and study the effect of some parameters ( temperature , time ) on the kinetic of the adsorption process of the dye were studied. Quantity of dye adsorbed was increased when the temperature increases from 298 to 318K which indicates that methyl green adsorption processes are endothermic nature . In order to describe the kinetic data and the rate adsorption constants of the pseudo-first-order and second-order kinetics were used . The kinetics data were applied well
... Show MoreThis study was carried out in Baghdad (Al-Jadiriya) in 2006 by detecting ability of aquatic reed plant to remove heavy metals (Chromium) from waste water by batch process of adsorption with considering that acidic solution is best selection for such process with constant initial chromium concentration(60 mg/l),speed of shaking(300 rpm), temperature (30 Co) and constant contact time (4 h) but with different weights of adsorbent (reed) (0.5 ,1 ,2 ,3 and 4 )gm for each 100 ml volume of sample . The results showed that the percentage of the removed chromium were ( 8% ,17.5% ,31% ,40% and 50%) respectively for each sample according to the mass of adsorb
... Show MoreThe aim of this work is to detect the best operating conditions that effect on the removal of Cu2+, Zn2+, and Ni2+ ions from aqueous solution using date pits in the batch adsorption experiments. The results have shown that the Al-zahdi Iraqi date pits demonstrated more efficient at certain values of operating conditions of adsorbent doses of 0.12 g/ml of aqueous solution, adsorption time 72 h, pH solution 5.5 ±0.2, shaking speed 300 rpm, and smallest adsorbent particle size needed for removal of metals. At the same time the particle size of date pits has a little effect on the adsorption at low initial concentration of heavy metals. The adsorption of metals increases with increas
... Show MoreThe present study aims to remove nickel ions from solution of the simulated wastewater using (Laminaria saccharina) algae as a biosorbent material. Effects of experimental parameters such as temperature at (20 - 40) C⁰, pH at (3 - 7) at time (10 - 120) min on the removal efficiency were studied.
Box-Wilson method was adopted to obtain a relationship between the above three experimental parameters and removal percentage of the nickel ions. The experimental data were fitted to second order polynomial model, and the optimum conditions for the removal process of nickel ions were obtained.
The highest removal percentage of nickel ions obtained was 98.8 %, at best operating conditions (Temperature 35 C⁰, pH 5 and Time 10 min).
Aluminum oxide (ALO) was grafted by acrylic acid monomer (AlO-AM) and then, it was polymerized to produce alumina grafted poly(acrylic acid) (AlO-AP). The prepared AlO-AM and AlO-AP were characterized by Fourier-transform infrared, differential scanning calorimetry , thermogravemetric analyzer and particle size distribution. Adsorption equilibrium isotherms, adsorption kinetics and thermodynamic studies of the batch adsorption process were used to examine the fundamental adsorption properties of phenol (P) and p-chlorophenol (PCP). The experimental equilibrium adsorption data were analyzed by three widely used two-parameters Langmuir, Freundlich and DubininRadushkevich isotherms. The maximum P and PCP adsorption capacities based on t
... Show More