In this work Nano crystalline (Cu2S) thin films pure and doped 3% Al with a thickness of 400±20 nm was precipitated by thermic steaming technicality on glass substrate beneath a vacuum of ~ 2 × 10− 6 mbar at R.T to survey the influence of doping and annealing after doping at 573 K for one hour on its structural, electrical and visual properties. Structural properties of these movies are attainment using X-ray variation (XRD) which showed Cu2S phase with polycrystalline in nature and forming hexagonal temple ,with the distinguish trend along the (220) grade, varying crystallites size from (42.1-62.06) nm after doping and annealing. AFM investigations of these films show that increase average grain size from 105.05 nm to 146.54 nm while decrease the roughness from 5.93 nm to 4.73 nm after doping. Hall measurements show that the conductivity change from 1.43 × 10− 3 to 7.33 × 103 (Ω cm)-1 , these films have p-type conductivity and the mobility varied from 3.87 × 102 to 8.48 × 1010 cm2 /V.s. Optical constants were calculated for these films in the range of wave length (300-1100) nm using UV/Visible measurement. The visual properties showed that Cu2S membrane have a high value of the absorption coefficient and decrease the optical energy gap values from (2.25-1.5) eV after doping with 3% Al. The characterization of these films can chose in the application of solar cells.
Solar energy has significant advantages compared to conventional sources such as coal and natural gas, including no emissions, no need for fuel, and the potential for installation in a wide range of locations with access to sunlight. In this investigation, heterocyclic derivatives were synthesized from several porphyrin derivatives (4,4',4",4"'-(porphyrin-5,10,15,20-tetrayl) tetra benzoic acid) compound (3), obtained by reaction Pyrrole with 4-formyl benzoic acid. Subsequently, porphyrin derivative-component amides 5a, 5b, and 5c were produced by reacting compound (3) with amine derivatives at a 1:4 molar ratio. These derivatives exhibited varying sensitivities for utilization in solar cells, with compound 5a displaying the highest power
... Show MoreThis paper deals with the preparation of new monomers and polymers which including heterocyclic unit. The diacid chlorides compounds [1-3] were prepared from the reaction of glutaric acid, adipic acid, terephthalic acid with thionyl chloride. Succinic acid reacted with ethanol to produce compound [4]. Compound [4] reacted with hydrazine hydrate to obtain succinic hydrazide [5].Compound [5] reaction with CS2 and KOH in absolute ethanol to produce compound [6].The polymers [7-12] have been created by reacting diacid chlorides compounds [1-3] with compound[5] or [6] in dry pyridine with some drops of DMF. The topology of produced compounds has characterized through their spectral and analytical data as in FT-IR spectra, Thermal analysis [DSC,
... Show MoreThe structural, optical and electrical properties of ZnS films prepared by vacuum evaporation technique on glass substrate at room temperature and treated at different annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction studies show that the structure is polycrystalline with cubic structure, and there are strong peaks at the direction (111). The optical properties investigated which include the absorbance and transmittance spectra, energy band gab, absorption coefficient, and other optical constants. The results showed that films have direct optical transition. The optical band gab was found to be in the range t
... Show MoreThe influence of the reaction gas composition during the DC magnetron sputtering process on the structural, chemical and optical properties of Ce-oxide thin films was investigated. X-ray diffraction (XRD) studies confirmed that all thin films exhibited a polycrystalline character with cubic fluorite structure for cerium dioxide. X-ray photoelectron spectroscopy (XPS) analyses revealed that cerium is present in two oxidation states, namely as CeO2 and Ce2O3, at the surface of the films prepared at oxygen/argon flow ratios between 0% and 7%, whereas the films are completely oxidized into CeO2 as the aforementioned ratio increases beyond 14%. Various optical parameters for the thin films (including an optical band gap in the range of 2.25–3.
... Show More