In this work Nano crystalline (Cu2S) thin films pure and doped 3% Al with a thickness of 400±20 nm was precipitated by thermic steaming technicality on glass substrate beneath a vacuum of ~ 2 × 10− 6 mbar at R.T to survey the influence of doping and annealing after doping at 573 K for one hour on its structural, electrical and visual properties. Structural properties of these movies are attainment using X-ray variation (XRD) which showed Cu2S phase with polycrystalline in nature and forming hexagonal temple ,with the distinguish trend along the (220) grade, varying crystallites size from (42.1-62.06) nm after doping and annealing. AFM investigations of these films show that increase average grain size from 105.05 nm to 146.54 nm while decrease the roughness from 5.93 nm to 4.73 nm after doping. Hall measurements show that the conductivity change from 1.43 × 10− 3 to 7.33 × 103 (Ω cm)-1 , these films have p-type conductivity and the mobility varied from 3.87 × 102 to 8.48 × 1010 cm2 /V.s. Optical constants were calculated for these films in the range of wave length (300-1100) nm using UV/Visible measurement. The visual properties showed that Cu2S membrane have a high value of the absorption coefficient and decrease the optical energy gap values from (2.25-1.5) eV after doping with 3% Al. The characterization of these films can chose in the application of solar cells.
In the last few decades, growing interest has been shown in the development of new solar selective coatings based on transition metal nitride and/or oxinitride for solar absorbing applications. Solar thermal collectors are well thought out to be the most effective process of converting and harvesting solar radiation. In this investigation, Cu/TiON/CrO2 multilayered solar selective absorber coatings have been coated onto Al substrates using the dip-coating process followed by an annealing process at (400, 450, 500, 550, and 600 °C. The XRD analysis showed excellent crystalline quality for the prepared thin films along with enhanced surface features as proved by FESEM images, and the grains are in the range of (27–81) nm. The optical in
... Show MoreThe influence of annealing on quaternary compound Ag0.9Cu0.1InSe2 (ACIS) thin film is considered a striking semiconductor for second-generation solar cells. The film deposited by thermal evaporation with a thickness of about 700 nm at R.T and vacuum annealing at temperatures (373,473) K for 1 hour. It was deposited in a vacuum of 4.5*10-5 Torr on a glass substrate. From XRD and AFM analysis, it is evident that Ag0.9Cu0.1InSe2 films are polycrystalline in nature, having ideal stoichiometric composition. Structural analysis indicated that annealing the films following the deposition resulted in the increasing polycrystalline phase with the preferred orientation along (112) direction. , increasing crystallite size and average grain size
... Show MoreAs part of our research on efficiency improvement of PERC (Passivated Emitter Rear Solar Cell), achieving very low reflectivity values of solar cell surface is a must. One of the most advance technologies to do so is the use of advanced texturing for the front surface of the cells. This texture, also known as Black Silicon, consists of peaks and valleys of nano metric dimensions and capable of dramatically reducing the reflectance of the front surface. A reflectance around 5% was reached ,using simulation, when using a Black-Silicon texturing with height of 50nm with peak rounding of 5nm. Even though this texturing may affect other parameters such as series resistance or surface recombination, as a starting point
... Show MoreThe influence of silver doped n-type polycrystalline CdTe film with thickness of 200 nm and rate deposition of 0.3 nm.s -1 prepared under high vacuum using thermal co-evaporation technique on its some structural and electrical properties was reported. The X- ray analysis showed that all samples are polycrystalline and have the cubic zinc blend structure with preferential orientation in the [111] direction. Films doping with impurity percentages (2, 3, and 4) %Ag lead to a significant increase in the carrier concentration, so it is found to change from 23.493 108 cm -3 to 59.297 108 cm -3 for pure and doped CdTe thin films with 4%Ag respectively. But films doping with impurity percentages above lead to a significant decrease in the electrica
... Show MoreIn this work the structural, electrical and optical Properties of CuO semiconductor films had been studied, which prepared at three thickness (100, 200 and 500 nm) by spray pyrolysis method at 573K substrate temperatures on glass substrates from 0.2M CuCl2•2H2O dissolved in alcohol. Structural Properties shows that the films have only a polycrystalline CuO phase with preferential orientation in the (111) direction, the dc conductivity shows that all films have two activation energies, Ea1 (0.45-0.66 eV) and Ea2 (0.055-.0185 eV), CuO films have CBH (Correlated Barrier Hopping) mechanism for ac-conductivity. The energy gap between (1.5-1.85 eV).
Indium doped CdTe polycrystalline films of thickness equals to 300nm were grown on corning glass substrates at temperature equals to 423K by thermal co-evaporation technique. The structural and electrical properties for these films were studied as a function of heat treatment (323,373,423)K. The x-ray analysis showed that all samples are polycrystalline and have the cubic zincblende structure with preferential orientation in the [111] direction, no diffraction peaks corresponding to metallic Cd, Te or other compounds were observed. It was found that the electrical resistivity drops and the carrier concentration increases when the CdTe film doped with 1.5% indium and treated at different annealing temperatures.
PMMA/TiO2 homogeneous thin films were deposited by using plasma jet system under normal atmospheric pressure and room temperature. PMMA/TiO2 nanocomposite thin film synthesized by plasma polymerization. Titanium oxide was mixed with Methyl Methacrylate Monomer (MMA) with specific weight ratios (1, 3 and 5 grams of TiO2 per 100 ml of MMA). Optical properties of PMMA/TiO2 nanocomposite thin films were characterized by UV-Visible absorption spectra using a double beam UV-Vis-NIR Spectrophotometer. The thin films surface morphological analysis is carried out by employing SEM. The structure analysis are achieved by X-ray diffraction. UV-Visible absorption spectra shows that the increasing the concentration of titanium oxide added to the polym
... Show More