In this work Nano crystalline (Cu2S) thin films pure and doped 3% Al with a thickness of 400±20 nm was precipitated by thermic steaming technicality on glass substrate beneath a vacuum of ~ 2 × 10− 6 mbar at R.T to survey the influence of doping and annealing after doping at 573 K for one hour on its structural, electrical and visual properties. Structural properties of these movies are attainment using X-ray variation (XRD) which showed Cu2S phase with polycrystalline in nature and forming hexagonal temple ,with the distinguish trend along the (220) grade, varying crystallites size from (42.1-62.06) nm after doping and annealing. AFM investigations of these films show that increase average grain size from 105.05 nm to 146.54 nm while decrease the roughness from 5.93 nm to 4.73 nm after doping. Hall measurements show that the conductivity change from 1.43 × 10− 3 to 7.33 × 103 (Ω cm)-1 , these films have p-type conductivity and the mobility varied from 3.87 × 102 to 8.48 × 1010 cm2 /V.s. Optical constants were calculated for these films in the range of wave length (300-1100) nm using UV/Visible measurement. The visual properties showed that Cu2S membrane have a high value of the absorption coefficient and decrease the optical energy gap values from (2.25-1.5) eV after doping with 3% Al. The characterization of these films can chose in the application of solar cells.
A number of ehemical ion materials were used as an absorber against solar energy. These materials were selected according to their absorption spectra in the wavelength range 300-800nm where the solar spectrum is coventrated. A solar olleetorw^esigd and The ability of each material inside the collector for absorbing the solar radiation was examined by a converter parameter “R”.According to the “R” parameter, the cohaltous and copperic ions material seems to be of higher capability for absorbing solar energy than the other materials.All the results were analyzed by means of a least-squared fitting program.
مجلة العلوم الاقتصادية والإدارية المجلد 18 العدد 69 الصفحات 318- 332 |
Metal corrosion is a destructive process for many industrial operations, including oil well acidizing and acid pickling. Therefore, numerous efforts made by many researchers to control the steel corrosion. In the present work, A (E)-4-(((4-(5-mercapto-1,3,4-oxadiazol-2-yl) phenyl) amino) methyl)-2-methoxyphenol (MOPM) has been synthesized and characterized as a new corrosion inhibitor for mild steel in 0.1 M hydrochloric acid. FTIR and 1 HNMR were used in the diagnosis of MOPM, while electrochemical polarization technique was employed to test the performance of inhibitor at various temperatures and inhibitor concentrations. Electrochemical studies showed that MOPM acts as a mixed-type inhibitor with a maximum inhibition efficiency of
... Show MoreThe drying process is considered an effective technique for preserving foods and agricultural products from spoilage. Moreover, the drying process lessens the products' weight, volume, and packaging, which prompts a reduction in the products' transportation costs. The drying technique with solar energy represents an ancient method, still alluring due to solar energy abundance and cost‐effectiveness. In this article, the previous manuscripts concerned with studying and analyzing indirect solar dryer systems that utilize innovative solar air heaters (SAHs) are reviewed. The results and conclusions are discussed intensively to clarify the significance of utilizing this type of drying technique. The ef
In this work, an investigation for the dynamic analysis of thin composite cylindrical and spherical shells is presented. The analytical solution is based upon the higher order shear deformation theory of elastic shells from which the developed equations are derived to deal with orthotropic layers. This will cover the determination of the fundamental natural frequencies and mode shapes for simply supported composites cylindrical and spherical shells.
The analytical results obtained by using the derived equations were confirmed by the finite element technique using the well known Ansys package. The results have shown a good agreement with a maximum percentage of discrepancy, which gives a confidence o
... Show MoreThe study involved preparing a new compound by combining between 2- hydroxybenzaldehyde and (Z)-3-hydrazineylideneindolin-2-one resulting in Schiff bases and metal ions: Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) forming stable minerals-based-Schiff complexes. The formation of resulting Schiff bases is detected spectrally using LC-Mss which gave corresponding results with theoretical results, 1H-NMR proves the founding of N=CH signal, FT-IR indicates the occurrence of imine band and UV-VIs mean is proved the ligand formation. On the other hand, minerals-based-Schiff was characterized using the same spectral means that relied with ligand (Schiff bases). Those means gave satisfactory results and proved the suggested distinguishable geometries
... Show MoreThe study involved preparing a new compound by combining between 2-hydroxybenzaldehyde and (Z)-3-hydrazineylideneindolin-2-one resulting in Schiff bases and metal ions: Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) forming stable minerals-based-Schiff complexes. The formation of resulting Schiff bases is detected spectrally using LC-Mss which gave corresponding results with theoretical results, 1H-NMR proves the founding of N=CH signal, FT-IR indicates the occurrence of imine band and UV-VIs mean is proved the ligand formation. On the other hand, minerals-based-Schiff was characterized using the same spectral means that relied with ligand (Schiff bases). Those means gave satisfactory results and proved the suggested distinguishable geometries.
... Show More