The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show More: The need for means of transmitting data in a confidential and secure manner has become one of the most important subjects in the world of communications. Therefore, the search began for what would achieve not only the confidentiality of information sent through means of communication, but also high speed of transmission and minimal energy consumption, Thus, the encryption technology using DNA was developed which fulfills all these requirements [1]. The system proposes to achieve high protection of data sent over the Internet by applying the following objectives: 1. The message is encrypted using one of the DNA methods with a key generated by the Diffie-Hellman Ephemeral algorithm, part of this key is secret and this makes the pro
... Show MoreProduction logging is used to diagnose well production problems by evaluating the flow profile, entries of unwanted fluids and downhole flow regimes. Evaluating wells production performance can be easily induce from production logs through interpretation of production log data to provide velocity profile and contribution of each zone on total production. Production logging results supply information for reservoir modeling, provide data to optimize the productivity of existing wells and plan drilling and completion strategies for future wells. Production logging was carried out in a production oil well from Mishrif formation of West Qurna field, with the objective to determine the flow profile and fluid contributions from the perforations af
... Show MoreBackground: This study aimed to determine the cephalometric values of tetragon analysis on a sample of Iraqi adults with normal occlusion. Material and methods: Forty digital true lateral cephalometric radiographs belong to 20 males and 20 females having normal dental relation were analyzed using AutoCAD program 2009. Descriptive statistics and sample comparison with Fastlicht norms were obtained. Results: The results showed that maxillary and mandibular incisors were more proclined and the maxillary/mandibular planes angle was lower in Iraqi sample than Caucasian sample. Conclusion: It's recommended to use result from this study when using tetragon analysis for Iraqis to get more accurate result.
This research had been achieved to identify the image of the subsurface structure representing the Tertiary period in the Galabat Field northeast of Iraq using 2D seismic survey measurements. Synthetic seismograms of the Galabat-3 well were generated in order to identify and pick the reflectors in seismic sections. Structural Images were drawn in the time domain and then converted to the depth domain by using average velocities. Structurally, seismic sections illustrate these reflectors are affected by two reverse faults affected on the Jeribe Formation and the layers below with the increase in the density of the reverse faults in the northern division. The structural maps show Galabat field, which consists of longitudinal Asymmetrical narr
... Show MoreThis research discussed, the process of comparison between the regression model of partial least squares and tree regression, where these models included two types of statistical methods represented by the first type "parameter statistics" of the partial least squares, which is adopted when the number of variables is greater than the number of observations and also when the number of observations larger than the number of variables, the second type is the "nonparametric statistic" represented by tree regression, which is the division of data in a hierarchical way. The regression models for the two models were estimated, and then the comparison between them, where the comparison between these methods was according to a Mean Square
... Show MoreIn this research, the one of the most important model and widely used in many and applications is linear mixed model, which widely used to analysis the longitudinal data that characterized by the repeated measures form .where estimating linear mixed model by using two methods (parametric and nonparametric) and used to estimate the conditional mean and marginal mean in linear mixed model ,A comparison between number of models is made to get the best model that will represent the mean wind speed in Iraq.The application is concerned with 8 meteorological stations in Iraq that we selected randomly and then we take a monthly data about wind speed over ten years Then average it over each month in corresponding year, so we g
... Show MoreEstimation of the tail index parameter of a one - parameter Pareto model has wide important by the researchers because it has awide application in the econometrics science and reliability theorem.
Here we introduce anew estimator of "generalized median" type and compare it with the methods of Moments and Maximum likelihood by using the criteria, mean square error.
The estimator of generalized median type performing best over all.