Moment invariants have wide applications in image recognition since they were proposed.
In this research, the effect of reinforcing epoxy resin composites with a filler derived from chopped agriculture waste from oil palm (OP). Epoxy/OP composites were formed by dispersing (1, 3, 5, and 10 wt%) OP filler using a high-speed mechanical stirrer utilizing a hand lay-up method. The effect of adding zinc oxide (ZnO) nanoparticles, with an average size of 10-30 nm, with different wt% (1,2,3, and 5wt%) to the epoxy/oil palm composite, on the behavior of an epoxy/oil palm composite was studied with different ratios (1,2,3, and 5wt%) and an average size of 10-30 nm. Fourier Transform Infrared (FTIR) spectrometry and mechanical properties (tensile, impact, hardness, and wear rate) were used to examine the composites. The FTIR
... Show MoreAbstract:
Robust statistics Known as, resistance to errors caused by deviation from the stability hypotheses of the statistical operations (Reasonable, Approximately Met, Asymptotically Unbiased, Reasonably Small Bias, Efficient ) in the data selected in a wide range of probability distributions whether they follow a normal distribution or a mixture of other distributions deviations different standard .
power spectrum function lead to, President role in the analysis of Stationary random processes, form stable random variables organized according to time, may be discrete random variables or continuous. It can be described by measuring its total capacity as function in frequency.
<
... Show MoreStrong and ∆-convergence for a two-step iteration process utilizing asymptotically nonexpansive and total asymptotically nonexpansive noneslf mappings in the CAT(0) spaces have been studied. As well, several strong convergence theorems under semi-compact and condition (M) have been proved. Our results improve and extend numerous familiar results from the existing literature.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreObjective: The aim of the study to evaluate the nursing care management for diabetes mellitus patient
with total hip replacement after fractured hip.
Methodology: A field study carried out on patients with diabetes mellitus and have total hip
replacement after fractured hip in orthopedic ward at the hospital of surgical specialization (malefemale)during
January 2002 to January 2003.Physical and psychological nursing
assessment
immediately after the surgery was done for the both subjects (control and experimental) and then a
scientific management with daily nursing care were provided to the experimental subject with daily
nursing care to the patient condition by using a scientific and practical methods and leave th
The logistic regression model is one of the oldest and most common of the regression models, and it is known as one of the statistical methods used to describe and estimate the relationship between a dependent random variable and explanatory random variables. Several methods are used to estimate this model, including the bootstrap method, which is one of the estimation methods that depend on the principle of sampling with return, and is represented by a sample reshaping that includes (n) of the elements drawn by randomly returning from (N) from the original data, It is a computational method used to determine the measure of accuracy to estimate the statistics, and for this reason, this method was used to find more accurate estimates. The ma
... Show MoreThe role of relaxation program for reducing anxiety of patients in dental clinic
The using of recycled aggregates from construction and demolition waste (CDW) can preserve natural aggregate resources, reduce the demand for landfill, and contribute to a sustainable built environment. Concrete demolition waste has been proven to be an excellent source of aggregates for new concrete production. At a technical, economic, and environmental level, roller compacted concrete (RCC) applications benefit various civil construction projects. Roller Compacted Concrete (RCC) is a homogenous mixture that is best described as a zero-slump concrete placed with compacting equipment, uses in storage areas, dams, and most often as a basis for rigid pavements. The mix must be sufficiently dry to support
... Show MoreAerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A
... Show More