The physical substance at high energy level with specific circumstances; tend to behave harsh and complicated, meanwhile, sustaining equilibrium or non-equilibrium thermodynamic of the system. Measurement of the temperature by ordinary techniques in these cases is not applicable at all. Likewise, there is a need to apply mathematical models in numerous critical applications to measure the temperature accurately at an atomic level of the matter. Those mathematical models follow statistical rules with different distribution approaches of quantities energy of the system. However, these approaches have functional effects at microscopic and macroscopic levels of that system. Therefore, this research study represents an innovative of a wireless temperature sensor, which utilizes proton resonance frequency of carbon-13 isotope material. In addition to that, this study also addresses the energy distribution of the particles by selecting an updated appropriate approach that has interesting points of limitation in the number of degree of freedom: (1) thermodynamically limits and (2) theoretical statistical thermodynamics observations. Lastly, the main idea of this paper is to visualize the analysis of temperate in the nanoscale system via statistical thermodynamics approach along with the material characterization of carbon-13 isotope.
Oilwell cementing operations are crucial for drilling and completion, preserving the well's productive life. However, weak and permeable formations pose a high risk of cement slurry loss, leading to failure. Lightweight cement, like foamed cement, is used to avoid these difficulties. This study is focused on creating a range of foamed slurry densities and examining the effect of gas concentration on their rheological properties. The foaming agent and foam stabilizer are tested, and the optimal concentration is determined to be 2% and 0.12%, respectively, by the weight of the cement.
Furthermore, the construction of samples of foam cement with different densities (0.8, 1.0, 1.2, 1.4, and 1.6) g/cc is performed to f
... Show MoreBig data analysis is essential for modern applications in areas such as healthcare, assistive technology, intelligent transportation, environment and climate monitoring. Traditional algorithms in data mining and machine learning do not scale well with data size. Mining and learning from big data need time and memory efficient techniques, albeit the cost of possible loss in accuracy. We have developed a data aggregation structure to summarize data with large number of instances and data generated from multiple data sources. Data are aggregated at multiple resolutions and resolution provides a trade-off between efficiency and accuracy. The structure is built once, updated incrementally, and serves as a common data input for multiple mining an
... Show MoreIn this work was prepared three different types of modified screen printed carbon electrode (SPCEs) with drops casted method, the used carbone nanomaterials were the MWCNT, functionalized –MWCNT (f-MWCNT) and After several experiments were made to find an appropriate ratio to make good GOT/f-MWCNT nanocomposite, and found the suspension mixture (1:1) from GOT/f-MWCNT (f-MWCNT-GOT). The electrical and physical properties were performed with cyclic voltammeter technique, and studied the maximum current response, the effective surface area, effect of the pH value and the determination of active surface area for MWCNT-SPCE , f-MWCNT-SPCE and f-MWCNT-GOT/SPCE as (0.04 cm2), (0.119 cm2) and (0.115 cm2) respectively, the surface coverage concent
... Show MoreThe Light and the Dark is the fourth novel in a series written by Charles Percy Snow where it tackles a phase of gifted scholar and remarkable individual Roy Calvert as he search for a source of power and meaning in life to relieve his inner turmoil. The character Roy Calvert is based on Snow's friend, Charles Allbery who exposes the message the character of Roy intends to convey in a certain phase of his life and the prophecy the novel carries amid catastrophe so widespread in the thirties of the twentieth century
Abstract
This research aims to study and improve the passivating specifications of rubber resistant to vibration. In this paper, seven different rubber recipes were prepared based on mixtures of natural rubber(NR) as an essential part in addition to the synthetic rubber (IIR, BRcis, SBR, CR)with different rates. Mechanical tests such as tensile strength, hardness, friction, resistance to compression, fatigue and creep testing in addition to the rheological test were performed. Furthermore, scanning electron microscopy (SEM)test was used to examine the structure morphology of rubber. After studying and analyzing the results, we found that, recipe containing (BRcis) of 40% from th
... Show MoreIn this work the corrosion behavior of Al metal was studied by using non- destructive testing (NDT), which is a noninvasive technique for determining the integrity of a material. The ultrasonic waves was used to measure the corrosion which occur by two corrosive medium (0.1N sodium chloride and 0.1N sodium hydroxide) and study the corrosion by weight-loss method and electrochemical method in addition to performance the microscopic inspection for the samples before and after the immersion in the corrosive medium. Corrosion parameters were interpreted in these media which involve corrosion potential (Ecorr) and corrosion current density (icorr). The results indicate that both
... Show MoreThis study aims to simulate and assess the hydraulic characteristics and residual chlorine in the water supply network of a selected area in Al-Najaf City using WaterGEMS software. Field and laboratory work were conducted to measure the pressure heads and velocities, and water was sampled from different sites in the network and then tested to estimate chlorine residual. Records and field measurements were utilized to validate WaterGEMS software. Good agreement was obtained between the observed and predicted values of pressure with RMSE range between 0.09–0.17 and 0.08–0.09 for chlorine residual. The results of the analysis of water distribution systems (WDS) during maximum demand
This research aims to develop transdermal patches of Ondansetron hydrochloride (OSH) with different types of polymers, ethyl cellulose and, polyvinyl pyrrolidone k30 in a ratio (3:0.5,3:1,3:2,2:1,1:1) with propylene glycol 20%w/w as a plasticizer. Prepared transdermal patches were evaluated for physical properties. The compatibility between the drug and excipients was studied by Differential scanning calorimetry (DSC), where there is no interaction between the drug and polymers. From the statistical study, there is a statistical difference between all the prepared formulations p<0.05. In-vitro Release study of transdermal patches was performed by using a paddle over the disc. The release profile of OSH follow
... Show More