The physical substance at high energy level with specific circumstances; tend to behave harsh and complicated, meanwhile, sustaining equilibrium or non-equilibrium thermodynamic of the system. Measurement of the temperature by ordinary techniques in these cases is not applicable at all. Likewise, there is a need to apply mathematical models in numerous critical applications to measure the temperature accurately at an atomic level of the matter. Those mathematical models follow statistical rules with different distribution approaches of quantities energy of the system. However, these approaches have functional effects at microscopic and macroscopic levels of that system. Therefore, this research study represents an innovative of a wireless temperature sensor, which utilizes proton resonance frequency of carbon-13 isotope material. In addition to that, this study also addresses the energy distribution of the particles by selecting an updated appropriate approach that has interesting points of limitation in the number of degree of freedom: (1) thermodynamically limits and (2) theoretical statistical thermodynamics observations. Lastly, the main idea of this paper is to visualize the analysis of temperate in the nanoscale system via statistical thermodynamics approach along with the material characterization of carbon-13 isotope.
New metal complexes of the ligand 4-[5-(2-hydoxy-phenyl)-[1,3,4- oxadiazol -2-ylimino methyl]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (L) with the metal ions Co(II), Ni(II), Cu(II) and Zn(II) were prepared in alcoholic medium. The Schiff base was synthesized through condensate of [4-antipyrincarboxaldehyde] with[2-amino-5-(2-hydroxy-phenyl-1,3,4- oxadiazol] in alcoholic medium . Two tetradentate Schiff base ligand were used for complexation upon two metal ions of Co2+, Ni2+, Cu2+ and Zn2+ as dineucler formula M2L2.4H2O. The metal complexes were characterized by FTIR Spectroscopy, electronic Spectroscopy, elemental analysis, magnetic susceptidbility measurements, and also the ligand was characterized by 1H-NMR spectra, and m
... Show MoreThis study describes preparation a new series of tetra-dentate N2O2 dinuclear complexes Cr(III), Co(II)and Cu(II) of the Schiff base 2-[5-(2-hydroxy-phenyl)-1,3,4-thiadiazol-2-ylimino]-methyl-naphthalen-1-ol], (LH2) derived from 1-hydroxy-naphthalene-2-carbaldehyde with 2-amino-5-(2-hydroxy-phenyl)-1,3,4-thiadiazole. These ligands were characterized by FT-IR, UV-Vis, Mass spectra, elemental analysis, and 1H-NMR. All prepared complexes have been characterized by conductance measurement, magnetic susceptibility, electronic spectra, infrared spectrum, thermal Analysis (TGA), and metal analysis by atomic absorption. The stoichiometry of metal to ligand, magnetic susceptibility, and electronic spectra measurements show an octahedral geom
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreA dispersive liquid-liquid microextraction combines with UV-V is spectrophotometry for the preconcentration and determination of Mefenamic acid in pharmaceutical preparation was developed and introduced. The proposed method is based on the formation of charge transfer complexation between mefenamic acid and chloranil as an n-electron donor and a p-acceptor, respectively to form a violet chromogen complex measured at 542 nm. The important parameters affecting the efficiency of DLLME were evaluated and optimized. Under the optimum conditions, the calibration graphs of standard and drug, were ranged 0.03-10 µg mL-1. The limits of detection, quantification and Sandell's sensitivity were calculated. Good recoveries of MAF Std. and drug at 0.05,
... Show MoreThe study aims to identify the impact of competency-based training in its dimensions (skills, cognitive abilities, attitudes, and attitudes) in improving the performance of employees (achievement, strategic thinking and problem solving) in Jordanian university hospitals.
The study based on analytical descriptive method. The study population consisted of the Jordanian University Hospitals, the University Hospital of Jordan and the King Abdullah Hospital, as applied study case. The sample of the study consists of all upper and middle administrative employees of these hospitals; questionnaire distributed all of them and the number of valid questionnaires for analysis were 182 questionnaire.
... Show MoreWith growing global demand for hydrocarbons and decreasing conventional reserves, the gas industry is shifting its focus in the direction of unconventional reservoirs. Tight gas reservoirs have typically been deemed uneconomical due to their low permeability which is understood to be below 0.1mD, requiring advanced drilling techniques and stimulation to enhance hydrocarbons. However, the first step in determining the economic viability of the reservoir is to see how much gas is initially in place. Numerical simulation has been regarded across the industry as the most accurate form of gas estimation, however, is extremely costly and time consuming. The aim of this study is to provide a framework for a simple analytical method to esti
... Show MoreIt is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological
... Show MoreIn this paper, a miniaturized 2 × 2 electro-optic plasmonic Mach– Zehnder switch (MZS) based on metal–polymer–silicon hybrid waveguide is presented. Adiabatic tapers are designed to couple the light between the plasmonic phase shifter, implemented in each of the MZS arms, and the 3-dB input/output directional couplers. For 6 µm-long hybrid plasmonic waveguide supported by JRD1 polymer (r33= 390 pm/V), a π-phase shift voltage of 2 V is obtained. The switch is designed for 1550 nm operation wavelength using COMSOL software and characterizes by 2.3 dB insertion loss, 9.9 fJ/bit power consumption, and 640 GHz operation bandwidth
: The Aluminium (Al) material emerged as a plasmonic material in the wavelength ranges from the ultraviolet to the visible bands in different on-chip plasmonic applications. In this paper, we demonstrate the effect of using Al on the electromagnetic (EM) field distribution of a compact hybrid plasmonic waveguide (HPW) acting as a polarization rotator. We compare the performance of Al with other familiar metals that are widely used as plasmonic materials, which are Silver (Ag) and Gold (Au). Furthermore, we study the effect of reducing the geometrical dimensions of the used materials on the EM field distributions inside the HPW and, consequently, on the efficiency of the polarization rotation. We perform the study based o
... Show More