The physical substance at high energy level with specific circumstances; tend to behave harsh and complicated, meanwhile, sustaining equilibrium or non-equilibrium thermodynamic of the system. Measurement of the temperature by ordinary techniques in these cases is not applicable at all. Likewise, there is a need to apply mathematical models in numerous critical applications to measure the temperature accurately at an atomic level of the matter. Those mathematical models follow statistical rules with different distribution approaches of quantities energy of the system. However, these approaches have functional effects at microscopic and macroscopic levels of that system. Therefore, this research study represents an innovative of a wireless temperature sensor, which utilizes proton resonance frequency of carbon-13 isotope material. In addition to that, this study also addresses the energy distribution of the particles by selecting an updated appropriate approach that has interesting points of limitation in the number of degree of freedom: (1) thermodynamically limits and (2) theoretical statistical thermodynamics observations. Lastly, the main idea of this paper is to visualize the analysis of temperate in the nanoscale system via statistical thermodynamics approach along with the material characterization of carbon-13 isotope.
Abstract
Binary polymer blend was prepared by mechanical mixing method of unsaturated polyester resin with Nitrile Butadiene Rubber (NBR) with different weight ratios (0, 5, 10 and 15) % of (NBR). Tensile characteristics and wear rates of these blends were studied for all mixing ratios. The microstructure of fracture surfaces of the prepared samples were investigated by optical microscope. The results were showed that strain rates of the resin material increase after blending it with rubber while the ultimate tensile strength and Young’s modulus values of it will decrease. It is also noticed that the wear rate of resin decreases with increasing of (NBR) content.
Keywords:<
... Show MoreJournal of Theoretical and Applied Information Technology is a peer-reviewed electronic research papers & review papers journal with aim of promoting and publishing original high quality research dealing with theoretical and scientific aspects in all disciplines of IT (Informaiton Technology
Abstract—In this study, we present the experimental results of ultra-wideband (UWB) imaging oriented for detecting small malignant breast tumors at an early stage. The technique is based on radar sensing, whereby tissues are differentiated based on the dielectric contrast between the disease and its surrounding healthy tissues. The image reconstruction algorithm referred to herein as the enhanced version of delay and sum (EDAS) algorithm is used to identify the malignant tissue in a cluttered environment and noisy data. The methods and procedures are tested using MRI-derived breast phantoms, and the results are compared with images obtained from classical DAS variant. Incorporating a new filtering technique and multiplication procedure, t
... Show MoreThis study was conducted in College of Science \ Computer Science Department \ University of Baghdad to compare between automatic sorting and manual sorting, which is more efficient and accurate, as well as the use of artificial intelligence in automated sorting, which included artificial neural network, image processing, study of external characteristics, defects and impurities and physical characteristics; grading and sorting speed, and fruits weigh. the results shown value of impurities and defects. the highest value of the regression is 0.40 and the error-approximation algorithm has recorded the value 06-1 and weight fruits fruit recorded the highest value and was 138.20 g, Gradin
This research was carried out at University of Baghdad - College of Agricultural Engineering Sciences during the fall season of 2020 and spring season of 2021 in order to evaluate the effect of organic fertilizer and the foliar application of boron on the growth and yield of industrial potatoes (Solanum tuberosum L.). Using factorial experiment (5*4) within Randomized Complete Block Design with three replicates, the organic fertilizer (palm fronds peat) was applied at four levels (0, 12, 24, and 36 ton ha-1) in addition to the treatment of the recommended of chemical fertilizer. The foliar application of Boron was applied at four concentrations which were 0, 100, 150 and 200 mg (H3Bo3). L-1. The results Revealed a significant incr
... Show MoreIntroduction to Medical and Biological Statistics for Pharmacy Students and Medical Groups (Undergraduate & Postgraduate) - ISBNiraq.org
This work involves theoretical and experimental studies for seven compounds to calculate the electrons spectrum and NLO properties. The theoretical study is done by employing the Time Depending Density Functional Theory TD-DFT and B3LYP/high basis set 6-311++G (2d,2p), using Gaussian program 09. Experimental study by UV/VIS spectrophotometer device to prove the theoretical study. Theoretical and experimental results were applicable in spectrum and energy gap values, in addition to convergence theoretically the energy gap results from ΔEHOMO-LUMO and UV/VIS. spectrum. Consider the theoretical method very appropriate to compounds that absorb in vacuum UV.
Desert truffle is considered as a type of Syrian wild fungi that spreads heavily, and it occupies important rank in folk medicine, where its aqueous extract is used for the treatment of some eye and skin illnesses, and people prefer the use of black truffle. This work interested in studying of the most available species; Terfezia claveryi (black) and Tirmania pinoyi (white). The extracts of the two species of truffle were prepared by maceration with water, methanol, and ethanol 70%. Their total phenolic contents (TPC) and total flavonoid contents (TFC) were analyzed using Folin-ciocalteu and Aluminum chloride methods respectively, and their antioxidant activities was tested using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and
... Show More