The physical substance at high energy level with specific circumstances; tend to behave harsh and complicated, meanwhile, sustaining equilibrium or non-equilibrium thermodynamic of the system. Measurement of the temperature by ordinary techniques in these cases is not applicable at all. Likewise, there is a need to apply mathematical models in numerous critical applications to measure the temperature accurately at an atomic level of the matter. Those mathematical models follow statistical rules with different distribution approaches of quantities energy of the system. However, these approaches have functional effects at microscopic and macroscopic levels of that system. Therefore, this research study represents an innovative of a wireless temperature sensor, which utilizes proton resonance frequency of carbon-13 isotope material. In addition to that, this study also addresses the energy distribution of the particles by selecting an updated appropriate approach that has interesting points of limitation in the number of degree of freedom: (1) thermodynamically limits and (2) theoretical statistical thermodynamics observations. Lastly, the main idea of this paper is to visualize the analysis of temperate in the nanoscale system via statistical thermodynamics approach along with the material characterization of carbon-13 isotope.
The gas material balance equation (MBE) has been widely used as a practical as well as a simple tool to estimate gas initially in place (GIIP), and the ultimate recovery (UR) factor of a gas reservoir. The classical form of the gas material balance equation is developed by considering the reservoir as a simple tank model, in which the relationship between the pressure/gas compressibility factor (p/z) and cumulative gas production (Gp) is generally appeared to be linear. This linear plot is usually extrapolated to estimate GIIP at zero pressure, and UR factor for a given abandonment pressure. While this assumption is reasonable to some extent for conventional reservoirs, this may incur
Research on the automated extraction of essential data from an electrocardiography (ECG) recording has been a significant topic for a long time. The main focus of digital processing processes is to measure fiducial points that determine the beginning and end of the P, QRS, and T waves based on their waveform properties. The presence of unavoidable noise during ECG data collection and inherent physiological differences among individuals make it challenging to accurately identify these reference points, resulting in suboptimal performance. This is done through several primary stages that rely on the idea of preliminary processing of the ECG electrical signal through a set of steps (preparing raw data and converting them into files tha
... Show MoreIn this paper, a simulation of the electrical performance for Pentacene-based top-contact bottom-gate (TCBG) Organic Field-Effect Transistors (OFET) model with Polymethyl methacrylate (PMMA) and silicon nitride (Si3N4) as gate dielectrics was studied. The effects of gate dielectrics thickness on the device performance were investigated. The thickness of the two gate dielectric materials was in the range of 100-200nm to maintain a large current density and stable performance. MATLAB simulation demonstrated for model simulation results in terms of output and transfer characteristics for drain current and the transconductance. The layer thickness of 200nm may result in gate leakage current points to the requirement of optimizing the t
... Show MoreA dispersive liquid-liquid microextraction combines with UV-V is spectrophotometry for the preconcentration and determination of Mefenamic acid in pharmaceutical preparation was developed and introduced. The proposed method is based on the formation of charge transfer complexation between mefenamic acid and chloranil as an n-electron donor and a p-acceptor, respectively to form a violet chromogen complex measured at 542 nm. The important parameters affecting the efficiency of DLLME were evaluated and optimized. Under the optimum conditions, the calibration graphs of standard and drug, were ranged 0.03-10 µg mL-1. The limits of detection, quantification and Sandell's sensitivity were calculated. Good recoveries of MAF Std. and drug at 0.05,
... Show MoreDam operation and management have become more complex recently because of the need for considering hydraulic structure sustainability and environmental protect on. An Earthfill dam that includes a powerhouse system is considered as a significant multipurpose hydraulic structure. Understanding the effects of running hydropower plant turbines on the dam body is one of the major safety concerns for earthfill dams. In this research, dynamic analysis of earthfill dam, integrated with a hydropower plant system containing six vertical Kaplan turbines (i.e., Haditha dam), is investigated. In the first stage of the study, ANSYS-CFX was used to represent one vertical Kaplan turbine unit by designing a three-dimensional (3-D) finite element (F
... Show MoreThe study aims to identify the impact of competency-based training in its dimensions (skills, cognitive abilities, attitudes, and attitudes) in improving the performance of employees (achievement, strategic thinking and problem solving) in Jordanian university hospitals.
The study based on analytical descriptive method. The study population consisted of the Jordanian University Hospitals, the University Hospital of Jordan and the King Abdullah Hospital, as applied study case. The sample of the study consists of all upper and middle administrative employees of these hospitals; questionnaire distributed all of them and the number of valid questionnaires for analysis were 182 questionnaire.
... Show More: The Aluminium (Al) material emerged as a plasmonic material in the wavelength ranges from the ultraviolet to the visible bands in different on-chip plasmonic applications. In this paper, we demonstrate the effect of using Al on the electromagnetic (EM) field distribution of a compact hybrid plasmonic waveguide (HPW) acting as a polarization rotator. We compare the performance of Al with other familiar metals that are widely used as plasmonic materials, which are Silver (Ag) and Gold (Au). Furthermore, we study the effect of reducing the geometrical dimensions of the used materials on the EM field distributions inside the HPW and, consequently, on the efficiency of the polarization rotation. We perform the study based o
... Show MoreWith growing global demand for hydrocarbons and decreasing conventional reserves, the gas industry is shifting its focus in the direction of unconventional reservoirs. Tight gas reservoirs have typically been deemed uneconomical due to their low permeability which is understood to be below 0.1mD, requiring advanced drilling techniques and stimulation to enhance hydrocarbons. However, the first step in determining the economic viability of the reservoir is to see how much gas is initially in place. Numerical simulation has been regarded across the industry as the most accurate form of gas estimation, however, is extremely costly and time consuming. The aim of this study is to provide a framework for a simple analytical method to esti
... Show More