The physical substance at high energy level with specific circumstances; tend to behave harsh and complicated, meanwhile, sustaining equilibrium or non-equilibrium thermodynamic of the system. Measurement of the temperature by ordinary techniques in these cases is not applicable at all. Likewise, there is a need to apply mathematical models in numerous critical applications to measure the temperature accurately at an atomic level of the matter. Those mathematical models follow statistical rules with different distribution approaches of quantities energy of the system. However, these approaches have functional effects at microscopic and macroscopic levels of that system. Therefore, this research study represents an innovative of a wireless temperature sensor, which utilizes proton resonance frequency of carbon-13 isotope material. In addition to that, this study also addresses the energy distribution of the particles by selecting an updated appropriate approach that has interesting points of limitation in the number of degree of freedom: (1) thermodynamically limits and (2) theoretical statistical thermodynamics observations. Lastly, the main idea of this paper is to visualize the analysis of temperate in the nanoscale system via statistical thermodynamics approach along with the material characterization of carbon-13 isotope.
Background:Measurement of hemoglobin A1c (A1C) is a renowned tactic for gauging long-term glycemic control, and exemplifies an outstanding influence to the quality of care in diabetic patients.The concept of targets is open to criticism; they may be unattainable, or limit what could be attained, and in addition they may be economically difficult to attain. However, without some form of targeted control of an asymptomatic condition it becomes difficult to promote care at allObjectives: The present article aims to address the most recent evidence-based global guidelines of A1C targets intended for glycemic control in Type 2 Diabetes Mellitus (T2D).Key messages:Rationale for Treatment Targets of A1C includesevidence for microvascular and ma
... Show MoreIn this paper, tunable optical band-pass filters based on Polarization Maintaining Fiber –Mach Zehnder Interferometer presented. Tunability of the band-pass filter implemented by applying different mechanical forces N on the micro-cavities splicing regions (MCSRs). The micro-cavity formed by using three variable-lengths of single-mode polarization-maintaining fiber with (8, 16, 24) cm lengths, splice between two segments of (SMF-28) with (26, 13) cm lengths, using the fusion splicing technique. Ellipsoidal shape micro-cavities experimentally achieved parallel to the propagation axis having dimensions between (12-24) μm of width and (4-12) μm of length. A micro-cavity with width and length as high as 24 μm and 12 μ
... Show MoreIn order to improve the effectiveness, increase the life cycle, and avoid the blade structural failure of wind turbines, the blades need to be perfectly designed. Knowing the flow angle and the geometric characteristics of the blade is necessary to calculate the values of the induction factors (axial and tangential), which are the basis of the Blade Element Momentum theory (BEM). The aforementioned equations form an implicit and nonlinear system. Consequently, a straightforward iterative solution process can be used to solve this problem. A theoretical study of the aerodynamic performance of a horizontal-axis wind turbine blade was introduced using the BEM. The main objective of the current work is to examine the wind turbine blade’s perf
... Show MoreWater contamination is a pressing global concern, especially regarding the presence of nitrate ions. This research focuses on addressing this issue by developing an effective adsorbent for removing nitrate ions from aqueous solutions. two adsorbents Chitosan-Zeolite-Zirconium (Cs-Ze-Zr composite beads and Chitosan-Bentonite-Zirconium Cs-Bn-Zr composite beads were prepared. The study involved continuous experimentation using a fixed bed column with varying bed heights (1.5 and 3 cm) and inlet flow rates (1 and 3 ml/min). The results showed that the breakthrough time increased with higher bed heights for both Cs-Ze-Zr and Cs-Bn-Zr composite beads. Conversely, an increase in flow rate led to a decrease in breakthrough time. Notab
... Show MoreThe research aims to identify the academic problems of family counseling diploma students at Saudi Universities. In addition, to identify the differences in these problems according to gender, marital status, place of study, academic specialization, and GPA. The sample consisted of (491) students. The researcher has used one questionnaire for academic problems prepared by the researcher. The research revealed the following results: There were academic problems among family counseling diploma students at Saudi Universities, the most problems were related to the systems and administrations of the university, then the field training, the buildings, classrooms and campus facilities, then the academic courses, after that the exams, then
... Show MoreThe advancement of cement alternatives in the construction materials industry is fundamental to sustainable development. Geopolymer is the optimal substitute for ordinary Portland cement, which produces 80% less CO2 emissions than ordinary Portland cement. Metakaolin was used as one of the raw materials in the geopolymerization process. This research examines the influence of three different percentages of sulfate (0.00038, 1.532, and 16.24) % in sand per molarity of NaOH on the compressive strength of metakaolin-based geopolymer mortar (MK-GPM). Samples were prepared with two different molarities (8M and 12M) and cured at room temperature. The best compressive strength value (56.98MPa) was recorded with 12M w
... Show MorePortland cement concrete is the most commonly used construction material in the world for decades. However, the searches in concrete technology are remaining growing to meet particular properties related to its strength, durability, and sustainability issue. Thus, several types of concrete have been developed to enhance concrete performance. Most of the modern concrete types have to contain supplementary cementitious materials (SCMs) as a partial replacement of cement. These materials are either by-products of waste such as fly ash, slag, rice husk ash, and silica fume or from a geological resource like natural pozzolans and metakaolin (MK). Ideally, the utilization of SCMs will enhance the concrete performance, minimize
... Show MoreIn this paper, we employ the maximum likelihood estimator in addition to the shrinkage estimation procedure to estimate the system reliability (
In this work, a Photonic Crystal Fiber (PCF) sensor based on the Surface Plasmon Resonance (SPR) technology was proposed. A thin layer of gold (Au) was deposited on a D-shaped Photonic Crystal Fiber (PCF), which was coated with plasmonic chemically stable gold material with a thickness of 40nm. The performance parameters like sensitivity including wavelength sensitivity and amplitude sensitivity and resolution were evaluated by simulation using COMSOL software. The proposed sensor was created by using the finite element approach, it is numerically examined. The results show that the surface of D-shaped Photonic Crystal Fiber coated with Au behaves as a sensor to detect the refractive index (IR) of toxic metal ions. The impacts of the str
... Show More