The physical substance at high energy level with specific circumstances; tend to behave harsh and complicated, meanwhile, sustaining equilibrium or non-equilibrium thermodynamic of the system. Measurement of the temperature by ordinary techniques in these cases is not applicable at all. Likewise, there is a need to apply mathematical models in numerous critical applications to measure the temperature accurately at an atomic level of the matter. Those mathematical models follow statistical rules with different distribution approaches of quantities energy of the system. However, these approaches have functional effects at microscopic and macroscopic levels of that system. Therefore, this research study represents an innovative of a wireless temperature sensor, which utilizes proton resonance frequency of carbon-13 isotope material. In addition to that, this study also addresses the energy distribution of the particles by selecting an updated appropriate approach that has interesting points of limitation in the number of degree of freedom: (1) thermodynamically limits and (2) theoretical statistical thermodynamics observations. Lastly, the main idea of this paper is to visualize the analysis of temperate in the nanoscale system via statistical thermodynamics approach along with the material characterization of carbon-13 isotope.
The corrosion behavior of low carbon steel in washing water of crude oil solution has been studied potentiostatically at five temperatures in the range ( 303 –343 )K, at pH ( 4 ) and at pH (4,6,7,9,11 ) at (343K)..The corrosion potential shifted to more negative values with increasing temperature and the corrosion current density increased with increasing temperature, the corrosion current density (icorr) decreased with increasing pH in the rang ( 4 – 7 ) and it increased with increasing pH in the rang ( 9 – 11 ) at ( 343 K ), while the corrosion potential generally variation with increasing pH in the rang (4-11)at(343K. From the general results for this study can be seen that thermodynamic and kinetic function were
... Show MoreThis study aimed to determine histological and functional effects of Galangin (Gal) conjugated with Gold nanoparticles (AuNPs) on the Kidneys male albino mice treated with CCL4. Gold nanoparticles were prepared chemically by Turkevich Method. Characterizing of the prepared AuNPs and AuNPs+Gal was carried out using UV Spectrophotometry, X-Ray Diffraction (XRD) and particle size,. For the in vivo study, 42 adult male albino mice were used and randomly distributed into seven groups and experiment extended for 14 days, first group (G1) was control group without any treatment, (G2) group injected intra-peritoneal (i.p) with CCl4 once a week to the end of experiments, (G3) injected with AuNPs, (G4 and
... Show More
Predicting peterophysical parameters and doing accurate geological modeling which are an active research area in petroleum industry cannot be done accurately unless the reservoir formations are classified into sub-groups. Also, getting core samples from all wells and characterize them by geologists are very expensive way; therefore, we used the Electro-Facies characterization which is a simple and cost-effective approach to classify one of Iraqi heterogeneous carbonate reservoirs using commonly available well logs.
The main goal of this work is to identify the optimum E-Facies units based on principal components analysis (PCA) and model based cluster analysis(MC
... Show MoreAbstract: A home-made dc sputtering is characterized by cathode potential of 250-2500 V and sputtering gas pressures of (3.5×10-2 – 1.5) mbar. This paper studies in experiment the breakdown of argon, nitrogen, and oxygen in a uniform dc electric field at different discharge gaps and cathode potentials. Paschen curves for Argon, Nitrogen, and oxygen are obtained by measuring the breakdown voltage of gas within a stainless steel vacuum chamber with two planar, stainless steel electrodes. The Paschen curves in Ar, N2, and O2 gases show that the breakdown voltage between two electrodes is a function of pd (The product of the pressure inside the chamber and distance between the electrodes). Current-voltage characteristics visualization of the
... Show MoreMechanical and thermal properties of composites, consisted of unsaturated polyester resin, reinforced by different kinds of natural materials (Orange peels and Date seeds) and industrial materials (carbon and silica) with particle size 98 µm were studied. Various weight ratios, 5, 10, and 15 wt. % of natural and industrial materials have been infused into polyester. Tensile, three-point bending and thermal conductivity tests were conducted for the unfilled polyester, natural and industrial composite to identify the weight ratio effect on the properties of materials. The results indicated that when the weight ratio for polyester with date seeds increased from 10% to 15%, the maximum Young’s modulus decreased by 54%. When the weight rat
... Show MoreAluminum oxide (ALO) was grafted by acrylic acid monomer (AlO-AM) and then, it was polymerized to produce alumina grafted poly(acrylic acid) (AlO-AP). The prepared AlO-AM and AlO-AP were characterized by Fourier-transform infrared, differential scanning calorimetry , thermogravemetric analyzer and particle size distribution. Adsorption equilibrium isotherms, adsorption kinetics and thermodynamic studies of the batch adsorption process were used to examine the fundamental adsorption properties of phenol (P) and p-chlorophenol (PCP). The experimental equilibrium adsorption data were analyzed by three widely used two-parameters Langmuir, Freundlich and DubininRadushkevich isotherms. The maximum P and PCP adsorption capacities based on t
... Show More2-amino-5-mercapto-1,3,4-thiadiazole [I] were prepared by the cyclization of thiosemecarbazide with carbon disulphide and anhydrous sodium carbonate in ethanol as a solvent. The reaction of compound [I] with alkyl halides yielded 2- amino-5-thioalkyl-1,3,4- thiadiazole [II] and [III] . Compound [II] and [III] were reacted with different aromatic aldehydes to yieled 2-[(substituted benzyliden ) amino] -5- thioalkyl-1,3,4- thiadiazole [IV]a-c , [V]a-d and [VI]a-d . Schiff ,s bases [IV]a-c , [V]a-d and [VI]a-d were found to react with 2mercapto benzoic acid in the triethyl amine to give 3-[ 5-( alkylthio) -1,3,4- thiadiazol-2-yl] 2,3- dihydro- 2- (aryl) benzo [e] [1,3] thiazine -4-one [VII]a-
... Show MoreThe [2-aminobenzothiazole]was reacted with [2,4,6 triyhydroxy-acetophenon monohydrate] to give a new ligand [2-N-2,4,6-trihydroxyacetophenonyliden benzothiazole] [H3L]. This ligand was reacted with metal ions ( CoII, NiII,CuII and ZnII) in methanol as solvent with ( 1:2 ) metal : ligand ratio to give a series of new complexes with general formula [ M(H2L)2],(where:M= CoII, NiII ,CuIIand, ZnII).All compounds were characterized by spectroscopic methods ( I.R , U.V – vis,HPLC) atomic absorption, along with chloride content and conductivity measurements. According to the data of these measurements we suggested a tetrahedral
This study focused on the biological synthesis of silver nanoparticles (AgNPs), using prodigiosin pigment produced by Serratia marcescens. The effect of parameters such as pH, temperature, time, with various concentrations of silver nitrate (AgNO3) and prodigiosin on the synthesis of AgNPs were also studied. Optimized results of the biosynthesis process revealed an increase in the intensity of Surface Plasmon Resonance (SPR) bands of nanoparticles with shifting at the wavelength of 400 nm. In addition, optimum synthesis of AgNPs was achieved at pH 12, temperature 55℃, and reaction time 24 h, with concentrations of prodigiosin, as a reducing agent, of 12.5 µg/ml and silver ion concentration of 1 mM. Measuremen
... Show More