Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model based on the Spike Neural Network (SNN) called IoT-Traffic Classification (IoT-TCSNN) to classify IoT devices traffic. The model consists of four phases: data preprocessing, feature extraction, classier and evaluation. The proposed model performance is evaluated according to evaluation metrics: accuracy, precision, recall and F1-score and energy usage in comparison with two models: ML based Support Vector Machine IoT-TCSVM and ML based Deep Neural Network (IoT-TCDNN). The evaluations result has been shown that IoT-TCSNN consumes less energy in contrast to IoT-TCDNN and IoT-TCSVM. Also, it gives high accuracy in comparison with IoT-TCSVM.
Estimations of average crash density as a function of traffic elements and characteristics can be used for making good decisions relating to planning, designing, operating, and maintaining roadway networks. This study describes the relationships between total, collision, turnover, and runover accident densities with factors such as hourly traffic flow and average spot speed on multilane rural highways in Iraq. The study is based on data collected from two sources: police stations and traffic surveys. Three highways are selected in Wassit governorate as a case study to cover the studied locations of the accidents. Three highways are selected in Wassit governorate as a case study to cover the studied locations of the accidents. The se
... Show MoreEstimations of average crash density as a function of traffic elements and characteristics can be used for making good decisions relating to planning, designing, operating, and maintaining roadway networks. This study describes the relationships between total, collision, turnover, and runover accident densities with factors such as hourly traffic flow and average spot speed on multilane rural highways in Iraq. The study is based on data collected from two sources: police stations and traffic surveys. Three highways are selected in Wassit governorate as a case study to cover the studied locations of the accidents. Three highways are selected in Wassit governorate as a case study to cover the studied locations of the accidents. The selection
... Show MoreThe current study aimed to determine the relation between the lead levels in the blood traffic men and the nature of their traffic work in Baghdad governorate. Blood samples were collected from 10 traffic men and the age about from 20-39 year from Directorate of Traffic Al Rusafa/ Baghdad and 10 samples another control from traffic men too with age 30-49 year and they livedrelatively in the clear cities or contained of Very few traffic areas. The levels of lead in blood estimated by used Atomic Absorption Spectrometry.
The result stated that there is no rising of the levels of lead in blood of traffic men Lead concentration was with more a range from 14 ppm in Traffic police are not healthy They are within the permissible limits, Ap
Undoubtedly, Road Traffic Accidents (RTAs) are a major dilemma in term of mortality and morbidity facing the road users as well as the traffic and road authorities. Since 2002, the population in Iraq has increased by 49 percent and the number of vehicles by three folds. Consequently, these increases were unfortunately combined with rising the RTAs number, mortality and morbidity. Alongside the humanitarian tragedies, every year, there are considerable economic losses in Iraq lost due to the epidemic of RTAs. Given the necessity of understanding the contributory factors related to RTAs for the implementation by traffic and road authorities to improve the road safety, the necessity have been a rise for
... Show MoreUndoubtedly, Road Traffic Accidents (RTAs) are a major dilemma in term of mortality and morbidity facing the road users as well as the traffic and road authorities. Since 2002, the population in Iraq has increased by 49 percent and the number of vehicles by three folds. Consequently, these increases were unfortunately combined with rising the RTAs number, mortality and morbidity. Alongside the humanitarian tragedies, every year, there are considerable economic losses in Iraq lost due to the epidemic of RTAs. Given the necessity of understanding the contributory factors related to RTAs for the implementation by traffic and road authorities to improve the road safety, the necessity have been a rise for this research which focuses into
... Show MoreIn this study, a theoretical scenario has been used to calculate the electronic current in sensitizer N3 molecule contact to TiO2 semiconductor for electrons in functional solar cells. It is known to play an important role on the compute the eficiency of solar cell. Some parameters of electronic current such as the transition energy, driving force energy, barrier height coupling overlapping values are determined. Transition energy is a necessary parameter to calculate the electronic current in solar cell with using wide polarity solvents Acetic acid, 2-Methoxyethanol, 1-Butanol, Methyl alcohol, chloroform, N,N-Dimethylacetamide and Ethyl alcohol via the quantum donor-acceptor system. Here, we show the results of transition energy can be var
... Show More(3) (PDF) Theoretical calculation of the electronic current at N3 contact with TiO2 solar cell devices. Available from: https://www.researchgate.net/publication/362780274_Theoretical_calculation_of_the_electronic_current_at_N3_contact_with_TiO2_solar_cell_devices [accessed May 01 2023].