Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model based on the Spike Neural Network (SNN) called IoT-Traffic Classification (IoT-TCSNN) to classify IoT devices traffic. The model consists of four phases: data preprocessing, feature extraction, classier and evaluation. The proposed model performance is evaluated according to evaluation metrics: accuracy, precision, recall and F1-score and energy usage in comparison with two models: ML based Support Vector Machine IoT-TCSVM and ML based Deep Neural Network (IoT-TCDNN). The evaluations result has been shown that IoT-TCSNN consumes less energy in contrast to IoT-TCDNN and IoT-TCSVM. Also, it gives high accuracy in comparison with IoT-TCSVM.
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
The aim of the present research is to identify the test wisdom and the engagement with learning and psychological tension among postgraduate students at the University of Samarra according to the variables of the department, gender, age, and whether students are employee or non-employee. The study also attempts to identify the relationship between the test wisdom and the engagement with learning and psychological tension. The research sample consisted of (75) postgraduate students randomly selected from college of Education. The researcher applied the test–wisdom of (Mellman & Ebel) and the scale of engagement with learning preparation by (Al-zaabi 2013). In addition, the researcher used the list of the psychological stress of (Abu
... Show MoreAbstract
The current research aims to identify the effect of using a model of generative learning in the achievement of first-middle students of chemical concepts in science. The researcher adopted the null hypothesis, which is there is no statistically significant difference at the level (0.05) between the mean scores of the experimental group who study using the generative learning model and the average scores of the control group who study using the traditional method in the chemical concepts achievement test. The research consisted of (200) students of the first intermediate at Al-Farqadin Intermediate School for Boys affiliated with the Directorate of General Education in Baghdad Governorate / Al-Karkh 3 wit
... Show MoreThe study aims at investigating the effectiveness of the Virtual Library Technology, in developing the achievement of the English Language Skills in the Center of Development and Continuous Education, in comparison with the individual learning via personal computer to investigate the students' attitude towards the use of both approaches. The population of the study includes the participants in the English Language course arranged in the Center. The sample includes 60 students who were randomly chosen from the whole population (participants in English Courses for the year 2009-2010). The sample is randomly chosen and divided into two experimental groups. The first group has learned through classroom technology; while the other group has l
... Show MoreThe intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is
... Show MoreSoftware-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne
... Show MoreObjective: The purpose of this study was to assess the effectiveness of Vibriophage Universiti Sains Malaysia 8 (VPUSM 8), a bacteriophage that destroys bacteria, in managing the proliferation of Vibrio cholerae, specifically the El Tor serotype, as an alternate therapeutic strategy. Methods: The study entailed subjecting water samples from Kelantan, Malaysia, to reproduce the natural circumstances that promote the growth of V. cholerae. Subsequently, the samples were contaminated with the V. cholerae O1 El Tor Inaba strain and treated using VPUSM 8. The study employed a controlled experimental design, wherein the samples were divided into three groups, each experiencing different treatment methods. Quantifying the number of colony-
... Show MoreA new design of manifold flow injection (FI) coupling with a merging zone technique was studied for sulfamethoxazole determination spectrophotometrically. The semiautomated FI method has many advantages such as being fast, simple, highly accurate, economical with high throughput . The suggested method based on the production of the orange- colored compound of SMZ with (NQS)1,2-Naphthoquinone-4-Sulphonic acid Sodium salt in alkaline media NaOH at λmax 496nm.The linearity range of sulfamethoxazole was 3-100 μg. mL-1, with (LOD) was 0.593 μg. mL-1 and the RSD% is about 1.25 and the recovery is 100.73%. All various physical and chemical parameters that have an effect on the stability and development of
... Show More