Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreThe haplotype association analysis has been proposed to capture the collective behavior of sets of variants by testing the association of each set instead of individual variants with the disease.Such an analysis typically involves a list of unphased multiple-locus genotypes with potentially sparse frequencies in cases and controls.It starts with inferring haplotypes from genotypes followed by a haplotype co-classification and marginal screening for disease-associated haplotypes.Unfortunately,phasing uncertainty may have a strong effects on the haplotype co-classification and therefore on the accuracy of predicting risk haplotypes.Here,to address the issue,we propose an alternative approach:In Stage 1,we select potential risk genotypes inste
... Show MoreWriting in English is one of the essential factors for successful EFL learning .Iraqi students at the preparatory schools encounter problems when using their background knowledge in handling subskills of writing(Burhan,2013:164).Therefore, this study aims to investigate the 4thyear preparatory school students’ problems in English composition writing, and find solutions to these pro
... Show MoreThis study was conducted in Baghdad, Iraq from December 2021 to May 2022. The goal was to determine the effect of Toxoplasma gondii on liver function by examining the relationship between Toxoplasma infection and hormones. One hundred and twenty male patients with Chronic liver disease (CLD) (age:14-75 years) and 120 control males (age: 24-70 years) participated in this study. Serum samples were taken from all individuals and were then analysed for anti-Toxoplasma antibodies. Hormonal tests were conducted for all participants which included (Cortisol, testosterone, prolactin, insulin, and thyroid-stimulating hormone TSH). Biochemical tests included (Prothrombin time PT, international normalized ratio INR and albumin); liver enzymes
... Show MoreBackground: With the start of the current century, increased the interest in the role of the adipose tissue derived substances that named adipokines in the inflammatory diseases of the human being including the inflammatory periodontal disease, but scientific evidences were not clearly demonstrate the association between these adipokines and periodontal pathologies. Materials and Methods: Forty two subjects male only with normal body mass index were selected for the study with an age ranged (30-39 years). Samples were divided into three groups of 14 subjects in each group based on clinical periodontal parameters; clinically healthy gingiva (group I), gingivitis group (group II) and chronic periodontitis patients group (group III), from whom
... Show MoreIn this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreProfessional learning societies (PLS) are a systematic method for improving teaching and learning performance through designing and building professional learning societies. This leads to overcoming a culture of isolation and fragmenting the work of educational supervisors. Many studies show that constructing and developing strong professional learning societies - focused on improving education, curriculum and evaluation will lead to increased cooperation and participation of educational supervisors and teachers, as well as increases the application of effective educational practices in the classroom.
The roles of the educational supervisor to ensure the best and optimal implementation and activation of professional learning soci
... Show More