The concerns about water contaminants affect most developing countries bypassing rivers over them. The issue is challenging to introduce water quality within the allowed limits for drinking, industrial and agricultural purposes. In the present study, physical-chemical parameters measurements of water samples taken from eleven stations were collected during six months in 2020 through flow path along the whole length of Tigris River inside AL Kut city (center of Wassit government) were investigated for six parameters are total hardness TH, hydrogen ion pH, biological oxygen demand BOD5, total dissolved solids TDS, nitrate NO3, and sulfate SO4. The water quality analysis results were compared with the maximum allowable limit concentration recommended by World Health Organization WHO and Iraqi limitation spastically; TH, BOD5, TDS, and SO4 had an average value of 421, 62, 813, and 376 mg/l, respectively. The spatial distribution of six water quality parameters within the studied area was carried out by implementing the Quantum Geography Information System QGIS technique established on the Inverse Distance Weighted IDW method to produce the interpolation predicted maps of stations along the river in Al Kut city. The results showed water quality degraded and an increase in the concentrations observed for all parameters along the river path, especially at the last two stations due to attributed to human activities, land use and industrialization, and outfall of sewerage flow to the river directly without treatment. Spatial distribution is essential to give a thorough understanding of the river's contamination reality. This makes it easier to understand, analyze and find the appropriate treatments and solutions to the problem of water quality.
Semantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the po
In This paper, sky radio emission background level associated with radio storm burst for the Sun and Jupiter is determined at frequency (20.1 MHz). The observation data for radio Jove telescope for the Sun and Jupiter radio storm observations data are loaded from NASA radio Jove telescope website, the data of Sunspot number are loaded from National Geophysical Data Center, (NGDC). Two radio Jove stations [(Sula, MT), (Lamy, NM)] are chose from data website for these huge observations data. For the Sun, twelve figures are used to determine the relation between radio background emission, and the daily Sunspot number. For Jupiter a twenty four figures are used to determine the relation between radio background emission and diffraction betwe
... Show MoreIn this study, dynamic encryption techniques are explored as an image cipher method to generate S-boxes similar to AES S-boxes with the help of a private key belonging to the user and enable images to be encrypted or decrypted using S-boxes. This study consists of two stages: the dynamic generation of the S-box method and the encryption-decryption method. S-boxes should have a non-linear structure, and for this reason, K/DSA (Knutt Durstenfeld Shuffle Algorithm), which is one of the pseudo-random techniques, is used to generate S-boxes dynamically. The biggest advantage of this approach is the production of the inverted S-box with the S-box. Compared to the methods in the literature, the need to store the S-box is eliminated. Also, the fabr
... Show MoreIn this study, a fast block matching search algorithm based on blocks' descriptors and multilevel blocks filtering is introduced. The used descriptors are the mean and a set of centralized low order moments. Hierarchal filtering and MAE similarity measure were adopted to nominate the best similar blocks lay within the pool of neighbor blocks. As next step to blocks nomination the similarity of the mean and moments is used to classify the nominated blocks and put them in one of three sub-pools, each one represents certain nomination priority level (i.e., most, less & least level). The main reason of the introducing nomination and classification steps is a significant reduction in the number of matching instances of the pixels belong to the c
... Show MoreThe aim of this research is to compare traditional and modern methods to obtain the optimal solution using dynamic programming and intelligent algorithms to solve the problems of project management.
It shows the possible ways in which these problems can be addressed, drawing on a schedule of interrelated and sequential activities And clarifies the relationships between the activities to determine the beginning and end of each activity and determine the duration and cost of the total project and estimate the times used by each activity and determine the objectives sought by the project through planning, implementation and monitoring to maintain the budget assessed
... Show MoreAs s widely use of exchanging private information in various communication applications, the issue to secure it became top urgent. In this research, a new approach to encrypt text message based on genetic algorithm operators has been proposed. The proposed approach follows a new algorithm of generating 8 bit chromosome to encrypt plain text after selecting randomly crossover point. The resulted child code is flipped by one bit using mutation operation. Two simulations are conducted to evaluate the performance of the proposed approach including execution time of encryption/decryption and throughput computations. Simulations results prove the robustness of the proposed approach to produce better performance for all evaluation metrics with res
... Show MoreIn this paper, we designed a new efficient stream cipher cryptosystem that depend on a chaotic map to encrypt (decrypt) different types of digital images. The designed encryption system passed all basic efficiency criteria (like Randomness, MSE, PSNR, Histogram Analysis, and Key Space) that were applied to the key extracted from the random generator as well as to the digital images after completing the encryption process.
Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre
... Show More