By definition, the detection of protein complexes that form protein-protein interaction networks (PPINs) is an NP-hard problem. Evolutionary algorithms (EAs), as global search methods, are proven in the literature to be more successful than greedy methods in detecting protein complexes. However, the design of most of these EA-based approaches relies on the topological information of the proteins in the PPIN. Biological information, as a key resource for molecular profiles, on the other hand, acquired a little interest in the design of the components in these EA-based methods. The main aim of this paper is to redesign two operators in the EA based on the functional domain rather than the graph topological domain. The perturbation mechanism of both crossover and mutation operators is designed based on the direct gene ontology annotations and Jaccard similarity coefficients for the proteins. The results on yeast Saccharomyces cerevisiae PPIN provide a useful perspective that the functional domain of the proteins, as compared with the topological domain, is more consistent with the true information reported in the Munich Information Center for Protein Sequence (MIPS) catalog. The evaluation at both complex and protein levels reveals that feeding the components of the EA with biological information will imply more accurate complex structures, whereas topological information may mislead the algorithm towards a faulty structure.
Community detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a
... Show MoreCommunity detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a local
... Show MoreDoppler broadening technique is suggested to monitor the development of tumours. It depends on the sensitivity of positronium (Ps) annihilation parameters to the sub- microstructural changes in biological tissues. This technique uses high resolution HpGe detector to measure the lineshape parameters (S and W) in normal mice's mammary tissues and adenocarcinoma mammary tissues as a function of tumour growth. The results demonstrate that the central parameter (S) decreases and the wing parameter (W) increases as the tumour grow. It is found that the S parameter changes considerably with the distribution of voids which are affected by the tumour development. Therefore the present technique can successfully be employed to monitor the developm
... Show MoreAt the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance pena
... Show MoreThe recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreThis Research deals with estimation the reliability function for two-parameters Exponential distribution, using different estimation methods ; Maximum likelihood, Median-First Order Statistics, Ridge Regression, Modified Thompson-Type Shrinkage and Single Stage Shrinkage methods. Comparisons among the estimators were made using Monte Carlo Simulation based on statistical indicter mean squared error (MSE) conclude that the shrinkage method perform better than the other methods
In this paper, we employ the maximum likelihood estimator in addition to the shrinkage estimation procedure to estimate the system reliability (
A Strength Pareto Evolutionary Algorithm 2 (SPEA 2) approach for solving the multi-objective Environmental / Economic Power Dispatch (EEPD) problem is presented in this paper. In the past fuel cost consumption minimization was the aim (a single objective function) of economic power dispatch problem. Since the clean air act amendments have been applied to reduce SO2 and NOX emissions from power plants, the utilities change their strategies in order to reduce pollution and atmospheric emission as well, adding emission minimization as other objective function made economic power dispatch (EPD) a multi-objective problem having conflicting objectives. SPEA2 is the improved version of SPEA with better fitness assignment, density estimation, an
... Show MoreAutomatic document summarization technology is evolving and may offer a solution to the problem of information overload. Multi-document summarization is an optimization problem demanding optimizing more than one objective function concurrently. The proposed work considers a balance of two significant objectives: content coverage and diversity while generating a summary from a collection of text documents. Despite the large efforts introduced from several researchers for designing and evaluating performance of many text summarization techniques, their formulations lack the introduction of any model that can give an explicit representation of – coverage and diversity – the two contradictory semantics of any summary. The design of gener
... Show More