By definition, the detection of protein complexes that form protein-protein interaction networks (PPINs) is an NP-hard problem. Evolutionary algorithms (EAs), as global search methods, are proven in the literature to be more successful than greedy methods in detecting protein complexes. However, the design of most of these EA-based approaches relies on the topological information of the proteins in the PPIN. Biological information, as a key resource for molecular profiles, on the other hand, acquired a little interest in the design of the components in these EA-based methods. The main aim of this paper is to redesign two operators in the EA based on the functional domain rather than the graph topological domain. The perturbation mechanism of both crossover and mutation operators is designed based on the direct gene ontology annotations and Jaccard similarity coefficients for the proteins. The results on yeast Saccharomyces cerevisiae PPIN provide a useful perspective that the functional domain of the proteins, as compared with the topological domain, is more consistent with the true information reported in the Munich Information Center for Protein Sequence (MIPS) catalog. The evaluation at both complex and protein levels reveals that feeding the components of the EA with biological information will imply more accurate complex structures, whereas topological information may mislead the algorithm towards a faulty structure.
Mobile Wireless sensor networks have acquired a great interest recently due to their capability to provide good solutions and low-priced in multiple fields. Internet of Things (IoT) connects different technologies such as sensing, communication, networking, and cloud computing. It can be used in monitoring, health care and smart cities. The most suitable infrastructure for IoT application is wireless sensor networks. One of the main defiance of WSNs is the power limitation of the sensor node. Clustering model is an actual way to eliminate the inspired power during the transmission of the sensed data to a central point called a Base Station (BS). In this paper, efficient clustering protocols are offered to prolong network lifetime. A kern
... Show MoreIn this paper an estimator of reliability function for the pareto dist. Of the first kind has been derived and then a simulation approach by Monte-Calro method was made to compare the Bayers estimator of reliability function and the maximum likelihood estimator for this function. It has been found that the Bayes. estimator was better than maximum likelihood estimator for all sample sizes using Integral mean square error(IMSE).
In this paper, the reliability of the stress-strength model is derived for probability P(Y<X) of a component having its strength X exposed to one independent stress Y, when X and Y are following Gompertz Fréchet distribution with unknown shape parameters and known parameters . Different methods were used to estimate reliability R and Gompertz Fréchet distribution parameters, which are maximum likelihood, least square, weighted least square, regression, and ranked set sampling. Also, a comparison of these estimators was made by a simulation study based on mean square error (MSE) criteria. The comparison confirms that the performance of the maximum likelihood estimator is better than that of the other estimators.
In this article we derive two reliability mathematical expressions of two kinds of s-out of -k stress-strength model systems; and . Both stress and strength are assumed to have an Inverse Lomax distribution with unknown shape parameters and a common known scale parameter. The increase and decrease in the real values of the two reliabilities are studied according to the increase and decrease in the distribution parameters. Two estimation methods are used to estimate the distribution parameters and the reliabilities, which are Maximum Likelihood and Regression. A comparison is made between the estimators based on a simulation study by the mean squared error criteria, which revealed that the maximum likelihood estimator works the best.
In this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of soc
... Show MoreIn this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of soc
... Show MoreIn this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of societie
... Show MoreScheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating opti
... Show MoreObjective: To assess role of obesity in Covid-19 patients on antibodies production, diabetes development, and treatment of this disease. Methodology: This observational study included 200 Covid-19 patients in privet centers from January 1, 2021 to January 1, 2022. All patients had fasting blood sugars and anti-Covid-19 antibodies. Anthropometric parameters were measured in all participants. Results: The patients were divided into two groups according to body weight; normal body weight (50) and excess body weight (150). There was a significant difference between them regarding age. Diabetes mellitus developed in 20% of normal weight patients while 80% of excess weight patients had diabetes (p=0.0001). Antibodies production (IgM and
... Show MoreObjective: To assess role of obesity in Covid-19 patients on antibodies production, diabetes development, and treatment of this disease. Methodology: This observational study included 200 Covid-19 patients in privet centers from January 1, 2021 to January 1, 2022. All patients had fasting blood sugars and anti-Covid-19 antibodies. Anthropometric parameters were measured in all participants. Results: The patients were divided into two groups according to body weight; normal body weight (50) and excess body weight (150). There was a significant difference between them regarding age. Diabetes mellitus developed in 20% of normal weight patients while 80% of excess weight patients had diabetes (p=0.0001). Antibodies production (IgM and
... Show More