By definition, the detection of protein complexes that form protein-protein interaction networks (PPINs) is an NP-hard problem. Evolutionary algorithms (EAs), as global search methods, are proven in the literature to be more successful than greedy methods in detecting protein complexes. However, the design of most of these EA-based approaches relies on the topological information of the proteins in the PPIN. Biological information, as a key resource for molecular profiles, on the other hand, acquired a little interest in the design of the components in these EA-based methods. The main aim of this paper is to redesign two operators in the EA based on the functional domain rather than the graph topological domain. The perturbation mechanism of both crossover and mutation operators is designed based on the direct gene ontology annotations and Jaccard similarity coefficients for the proteins. The results on yeast Saccharomyces cerevisiae PPIN provide a useful perspective that the functional domain of the proteins, as compared with the topological domain, is more consistent with the true information reported in the Munich Information Center for Protein Sequence (MIPS) catalog. The evaluation at both complex and protein levels reveals that feeding the components of the EA with biological information will imply more accurate complex structures, whereas topological information may mislead the algorithm towards a faulty structure.
In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from
... Show MoreIn this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant
... Show MoreRecent research has shown that a Deoxyribonucleic Acid (DNA) has ability to be used to discover diseases in human body as its function can be used for an intrusion-detection system (IDS) to detect attacks against computer system and networks traffics. Three main factor influenced the accuracy of IDS based on DNA sequence, which is DNA encoding method, STR keys and classification method to classify the correctness of proposed method. The pioneer idea on attempt a DNA sequence for intrusion detection system is using a normal signature sequence with alignment threshold value, later used DNA encoding based cryptography, however the detection rate result is very low. Since the network traffic consists of 41 attributes, therefore we proposed the
... Show MoreThe detection for Single Escherichia Coli Bacteria has attracted great interest and in biology and physics applications. A nanostructured porous silicon (PS) is designed for rapid capture and detection of Escherichia coli bacteria inside the micropore. PS has attracted more attention due to its unique properties. Several works are concerning the properties of nanostructured porous silicon. In this study PS is fabricated by an electrochemical anodization process. The surface morphology of PS films has been studied by scanning electron microscope (SEM) and atomic force microscope (AFM). The structure of porous silicon was studied by energy-dispersive X-ray spectroscopy (EDX). Details of experimental methods and results are given and discussed
... Show MoreHuman cytomegalovirus (HCMV) infects a wide range of human cells, resulting in both benign and malignant tumors. In the last few decades, proteins and/or nucleic acids of the virus were found to be often highly expressed in in patients with basal cell hyperplasia and prostatic neoplasia.
This research aimed to unravel the rate of HCMV infections among prostatic tissue subsets from Iraqi patients with adenocarcinoma and benign hyperplasia.
One hundred, formalin-fixed and paraffin embedded prostatic tissues were obtained from 40 tissue samples collected from different grades of prostate carcinoma; 40 from benign prostatic hyperplasia and 20 from apparently healthy prostatic tissues. These tissue spe
... Show More