High smoke emissions, nitrogen oxide and particulate matter typically produced by diesel engines. Diminishing the exhausted emissions without doing any significant changes in their mechanical configuration is a challenging subject. Thus, adding hydrogen to the traditional fuel would be the best practical choice to ameliorate diesel engines performance and reduce emissions. The air hydrogen mixer is an essential part of converting the diesel engine to work under dual fuel mode (hydrogen-diesel) without any engine modification. In this study, the Air-hydrogen mixer is developed to get a homogenous mixture for hydrogen with air and a stoichiometric air-fuel ratio according to the speed of the engine. The mixer depends on the balance between the force exerted on the head surface of the valve and the opposite forces (the spring and friction forces) and its relation to decrease and increase the fuel inlet. Computational fluid dynamics (CFD) analysis software was utilised to study the hydrogen and airflow behaviour inside the mixer, established by 3.2 L engine. The Air-hydrogen mixer is examined with different speeds of engine1000, 2000, 3000 and 4000 RPM. Results showed air-hydrogen mixture was homogenous in the mixer. Furthermore, the stoichiometric air-fuel ratio was achieved according to the speed of the engine, the developed mixer of the AIR-Hydrogen mixing process provides high mixing homogeneity and engines with stoichiometric air-fuel ratios, which subsequently contributes to the high levels of efficiency in engine operation. In summary, the current study intends to reduce the emissions of gases and offer a wide range of new alternative fuels usage. While the performance of the diesel engine with the new air-hydrogen mixer needs to be tested practically.
Combining ultrasonic irradiation and the Fenton process as a sono-Fenton process, the chemical oxygen demand (COD) in refinery wastewater was successfully eliminated using response surface methodology (RSM) with central composite design (CCD). The impact of two main influential operational parameters (iron dosage and reaction time) on the COD removal from wastewater generated by an Iraqi petroleum refinery facility was explored. Removal of 85.81% was attained under the optimal conditions of 21 minutes and 0.289 mM of concentration. Additionally, the results revealed that the concentration of has the highest effect on the COD elimination, followed by reaction time. The high R2 value (96.40%) validated the strong fit of the mo
... Show MoreIn this research, the electrical characteristics of glow discharge plasma were studied. Glow discharge plasma generated in a home-made DC magnetron sputtering system, and a DC-power supply of high voltage as input to the discharge electrodes were both utilized. The distance between two electrodes is 4cm. The gas used to produce plasma is argon gas which flows inside the chamber at a rate of 40 sccm. The influence of work function for different target materials (gold, copper, and silver), - 5cm in diameter and around 1mm thickness - different working pressures, and different applied voltages on electrical characteristics (discharge current, discharge potential, and Paschen’s curve) were studied. The results showed that the discharge cur
... Show MoreOne of the goals of adding adjuvants to agricultural spray solutions is to enhance the droplet size characteristics of this spray. Droplet size, in turn, has an influence in the deposited spray quality, in addition to the drift and losses of spray to off-target places. The aim of this research was to evaluate the effect of adding adjuvants to two types of water from different sources on the droplet size characteristics. Two types of adjuvants were employed in the tests: the active substance content of the first adjuvant was a 50% aqueous solution of sodium salt of alkylbenzenesulfonic acid—10% (HY), whereas the second was from rapeseed oil (natural origin)—85% (OL). Both adjuvants were tested in two concentrations: the first was
... Show MoreIn this study, an analysis of the synoptic characteristics, causes and mechanisms of Kahlaa tornado event was carried out. This tornado occurred on 10:30 UTC (1:30 pm Iraq Local Time) on 14 April 2016 to the north of Kahlaa town in Maysan governorate. We analyzed surface and upper charts, weather conditions, the damage indices, the dynamical features and the instability of the tornado. The analysis showed that there was a low pressure system which was an extension of the Monsoon low in addition to a supercell thunderstorm and a jet stream aloft. The cold trough and high relative vorticity at 500 hPa level, the humid warm wind blowing from the south and the dry cold wind from the north contributed to the initiation of the tornado. Accordi
... Show MoreExperimental study on the effect of cylindrical hollow cathode, working pressure and magnetic field on spatial glow distribution and the characteristics of plasma produced by dc discharge in Argon gas, were investigated by image analyses for the plume within the plasma. It was found that the emission intensity appears as a periodic structure with many peaks appeared between the electrodes. Increasing the pressure leads to increase the number of intensity peaks finally converted to continuous form at high pressure, especially with applied of magnetic field, i.e. the plasma is more stable with the presence of magnetic field. The emission intensity study of plasma showed that the intensity has a maximum value at 1.07 mbar pressure and decre
... Show MoreSurface modeling utilizing Bezier technique is one of the more important tool in computer aided geometric design (CAD). The aim of this work is to design and implement multi-patches Bezier free-form surface. The technique has an effective contribution in technology domains and in ships, aircrafts, and cars industry, moreover for its wide utilization in making the molds. This work is includes the synthesis of these patches in a method that is allow the participation of these control point for the merge of the patches, and the confluence of patches at similar degree sides due to degree variation per patch. The model has been implemented to represent the surface. The interior data of the desired surfaces designed by M
... Show MoreAgent technology has a widespread usage in most of computerized systems. In this paper agent technology has been applied to monitor wear test for an aluminium silicon alloy which is used in automotive parts and gears of light loads. In addition to wear test monitoring، porosity effect on
wear resistance has been investigated. To get a controlled amount of porosity, the specimens have
been made by powder metallurgy process with various pressures (100, 200 and 600) MPa. The aim of
this investigation is a proactive step to avoid the failure occurrence by the porosity.
A dry wear tests have been achieved by subjecting three reciprocated loads (1000, 1500 and 2000)g
for three periods (10, 45 and 90)min. The weight difference a
Abstract
This paper concerned with study the effect of a graphite micro powder mixed in the kerosene dielectric fluid during powder mixing electric discharge machining (PMEDM) of high carbon high chromium AISI D2 steel. The type of electrode (copper and graphite), the pulse current and the pulse-on time and mixing powder in kerosene dielectric fluid are taken as the process main input parameters. The material removal rate MRR, the tool wear ratio TWR and the work piece surface roughness (SR) are taken as output parameters to measure the process performance. The experiments are planned using response surface methodology (RSM) design procedure. Empirical models are developed for MRR, TWR and SR, using the analysis
... Show MoreThe work includes fabrication of undoped and silver-doped nanostructured nickel oxide in form thin films, which use for applications such as gas sensors. Pulsed-laser deposition (PLD) technique was used to fabricate the films on a glass substrate. The structure of films is studied by using techniques of x-ray diffraction, SEM, and EDX. Thermal annealing was performed on these films at 450°C to introduce its effect on the characteristics of these films. The films were doped with a silver element at different doping levels and both electrical and gas sensing characteristics were studied and compared to those of the undoped films. Reasonable enhancements in these characteristics were observed and attributed to the effects of thermal annealing
... Show More