In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction accuracy criterion and matching curve-fitting in this work demonstrated that if the residuals of the revised model are white noise, the forecasts are unbiased. Future work investigating robust hybrid model forecasting using fuzzy neural networks would be very interesting.
Statement of the Problem. The use of orthodontic fixed appliances may adversely affect oral health leading to demineralizing lesions and the development of gingival problems. Aims of the Study. The study aimed to coat orthodontic archwires with chlorhexidine hexametaphosphate nanoparticles (CHX-HMP NPs) and to evaluate the elusion of CHX from CHX-HMP NPs. Materials and Methods. A solution of CHX-HMP nanoparticles with an overall concentration of 5 mM for both CHX and HMP was prepared, characterized (using atomic force microscope and Fourier transformation infrared spectroscopy), and used to coat orthodontic stainless steel (SSW) and NiTi archwires (NiTiW). The coated segments were characterized (using scanning electron microscopy
... Show MoreDiabetic foot ulcer (DFU) or Lower limb ulcers are one of the major complications caused by diabetes mellitus especially when patients fail to maintain tight glycemic control. DFU is linked to multiple risk factors along with the genetic factors and ethnicity which play a significant role in the development of DFUs through their effects on multiple aspects of the pathophysiological process. This narrative review aimed to summarize all the previous studies within the last ten years associating gene polymorphism and DFU. Polymorphism associated with vascular endothelial growth factor (rs699947), the G894T polymorphism of the endothelial nitric oxide synthase gene, interleukin-6–174 G>C gene polymorphism, heat shock protein 70 gene polymorph
... Show MoreIn the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and
... Show MoreThe map of permeability distribution in the reservoirs is considered one of the most essential steps of the geologic model building due to its governing the fluid flow through the reservoir which makes it the most influential parameter on the history matching than other parameters. For that, it is the most petrophysical properties that are tuned during the history matching. Unfortunately, the prediction of the relationship between static petrophysics (porosity) and dynamic petrophysics (permeability) from conventional wells logs has a sophisticated problem to solve by conventional statistical methods for heterogeneous formations. For that, this paper examines the ability and performance of the artificial intelligence method in perme
... Show MoreIn the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and
... Show MoreAbstract:
Objectives: The present study aims to evaluate effectiveness of educational program the nurses' knowledge towards early prediction of acquired weakness in the intensive care unit.
Methodology: A pre-experimental study design (comparison of two groups), which was achieved through the pre and post-test method for the study sample through the application of an educational program in the intensive care unit of Al-Zahra Teaching Hospital in Kut city, Wasit Governorate. The study was conducted for the period from 28th April 2022 to 15th August 2022 by selecting a purposive (non-probability) sample for this study. The study sample size was (52) nu
... Show MoreAs tight gas reservoirs (TGRs) become more significant to the future of the gas industry, investigation into the best methods for the evaluation of field performance is critical. While hydraulic fractured well in TRGs are proven to be most viable options for economic recovery of gas, the interpretation of pressure transient or well test data from hydraulic fractured well in TGRs for the accurate estimation of important reservoirs and fracture properties (e.g. fracture length, fracture conductivity, skin and reservoir permeability) is rather very complex and difficult because of the existence of multiple flow profiles/regimes. The flow regimes are complex in TGRs due to the large hydraulic fractures n
In the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and
... Show MoreThe possibility of predicting the mass transfer controlled CaCO3 scale removal rate has been investigated.
Experiments were carried out using chelating agents as a cleaning solution at different time and Reynolds’s number. The results of CaCO3 scale removal or (mass transfer rate) (as it is the controlling process) are compared with proposed model of prandtl’s and Taylor particularly based on the concept of analogy among momentum and mass transfer.
Correlation for the variation of Sherwood number ( or mass transfer rate ) with Reynolds’s number have been obtained .