In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction accuracy criterion and matching curve-fitting in this work demonstrated that if the residuals of the revised model are white noise, the forecasts are unbiased. Future work investigating robust hybrid model forecasting using fuzzy neural networks would be very interesting.
An experimental and theoretical works were carried out to model the wire condenser in the domestic refrigerator by calculating the heat transfer coefficient and pressure drop and finding the optimum performance. The two methods were used for calculation, zone method, and an integral method. The work was conducted by using two wire condensers with equal length but different in tube diameters, two refrigerants, R-134a and R-600a, and two different compressors matching the refrigerant type. In the experimental work, the optimum charge was found for the refrigerator according to ASHRAE recommendation. Then, the tests were done at 32˚C ambient temperature in a closed room with dimension (2m*2m*3m). The results showed that th
... Show MoreScheduling considered being one of the most fundamental and essential bases of the project management. Several methods are used for project scheduling such as CPM, PERT and GERT. Since too many uncertainties are involved in methods for estimating the duration and cost of activities, these methods lack the capability of modeling practical projects. Although schedules can be developed for construction projects at early stage, there is always a possibility for unexpected material or technical shortages during construction stage. The objective of this research is to build a fuzzy mathematical model including time cost tradeoff and resource constraints analysis to be applied concurrently. The proposed model has been formulated using fuzzy the
... Show MoreThe tourism industry has become, currently, an art, an industry and a science. It is also one of the components that make up touristic regions. Tourist attractions are no longer the exclusive visits of museums and archeological sites, but also involve other service facilities. It is, therefore, imperative that the authorities should become aware of the degradation of tourist resorts and prevent them from getting worse. Moreover, the authorities should take a set of decisions concerning the protection of the urban aspect with its historical, social, and environmental dimensions, as well as, adapting it to the modern requirements that can bring comfort to the citizens and tourists at physical and psychological levels.
The goal of the research is to develop a sustainable rating system for roadway projects in Iraq for all of the life cycle stages of the projects which are (planning, design, construction and operation and maintenance). This paper investigates the criteria and its weightings of the suggested roadway rating system depending on sustainable planning activities. The methodology started in suggesting a group of sustainable criteria for planning stage and then suggesting weights from (1-5) points for each one of it. After that data were collected by using a closed questionnaire directed to the roadway experts group in order to verify the criteria weightings based on the relative importance of the roadway related impacts
... Show MoreLong memory analysis is one of the most active areas in econometrics and time series where various methods have been introduced to identify and estimate the long memory parameter in partially integrated time series. One of the most common models used to represent time series that have a long memory is the ARFIMA (Auto Regressive Fractional Integration Moving Average Model) which diffs are a fractional number called the fractional parameter. To analyze and determine the ARFIMA model, the fractal parameter must be estimated. There are many methods for fractional parameter estimation. In this research, the estimation methods were divided into indirect methods, where the Hurst parameter is estimated fir
... Show MoreThis work aims to detect the associations of C-peptide and the homeostasis model assessment of beta-cells function (HOMA2-B%) with inflammatory biomarkers in pregnant-women in comparison with non-pregnant women. Sera of 28 normal pregnant women at late pregnancy versus 27 matched age non-pregnant women (control), were used to estimate C-peptide, triiodothyronine (T3), and thyroxin (T4) by Enzyme-linked-immunosorbent assay (ELISA), fasting blood sugar (FBS) by automatic analyzer Biolis 24i, hematology-tests by hematology analyzer and the calculation of HOMA2-B% and homeostasis model assessment of insulin sensitivity (HOMA2-S%) by using C-peptide values instead of insulin. The comparisons, correlations, regression analysis tests were perfo
... Show More